Mon, Dec 29, 2025

Propagation anomalies - 2025-12-29

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,175
MEV blocks: 6,664 (92.9%)
Local blocks: 511 (7.1%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1787.0 + 15.86 × blob_count (R² = 0.010)
Residual σ = 624.3ms
Anomalies (>2σ slow): 256 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13350528 0 6580 1787 +4793 piertwo Local Local
13352063 0 6534 1787 +4747 solo_stakers Local Local
13352296 0 6420 1787 +4633 solo_stakers Local Local
13352004 3 6366 1835 +4531 coinbase Local Local
13352005 0 6247 1787 +4460 solo_stakers Local Local
13349920 0 5261 1787 +3474 upbit Local Local
13348868 15 5277 2025 +3252 piertwo 0xa230e2cf... Flashbots
13345235 0 4832 1787 +3045 staked.us Local Local
13347594 9 4777 1930 +2847 ether.fi Local Local
13352191 5 4660 1866 +2794 whale_0x4fd7 Local Local
13352000 0 4275 1787 +2488 upbit Local Local
13350178 0 4198 1787 +2411 ether.fi Local Local
13346480 0 4069 1787 +2282 lido Local Local
13349259 5 4054 1866 +2188 lido Local Local
13350096 0 3971 1787 +2184 ether.fi Local Local
13349536 0 3965 1787 +2178 Local Local
13345318 0 3952 1787 +2165 lido Local Local
13348507 0 3861 1787 +2074 everstake Local Local
13348268 10 3965 1946 +2019 kraken 0xb26f9666... EthGas
13345568 0 3769 1787 +1982 lido Local Local
13351072 1 3783 1803 +1980 stakefish Local Local
13352384 14 3961 2009 +1952 senseinode_lido 0x88857150... Ultra Sound
13349593 0 3706 1787 +1919 stakingfacilities_lido Local Local
13351912 3 3713 1835 +1878 blockdaemon 0xb26f9666... Titan Relay
13346981 0 3662 1787 +1875 0x8527d16c... Ultra Sound
13348390 5 3741 1866 +1875 0x853b0078... Ultra Sound
13352146 1 3669 1803 +1866 lido 0xb26f9666... Titan Relay
13350432 7 3740 1898 +1842 blockdaemon_lido 0xac23f8cc... BloXroute Max Profit
13351730 0 3627 1787 +1840 0x8527d16c... Ultra Sound
13345668 0 3627 1787 +1840 ether.fi Local Local
13346704 5 3701 1866 +1835 whale_0xb83e 0x823e0146... Flashbots
13347890 0 3593 1787 +1806 0x88857150... Ultra Sound
13350591 10 3722 1946 +1776 solo_stakers 0x8db2a99d... Ultra Sound
13350938 3 3589 1835 +1754 blockdaemon 0xb26f9666... Titan Relay
13350819 6 3636 1882 +1754 0x91b123d8... BloXroute Regulated
13350862 3 3581 1835 +1746 ether.fi 0x8db2a99d... Flashbots
13345952 9 3675 1930 +1745 binance 0xb67eaa5e... BloXroute Regulated
13346465 6 3624 1882 +1742 0xb26f9666... BloXroute Regulated
13348321 1 3532 1803 +1729 everstake 0xb26f9666... Aestus
13345455 8 3642 1914 +1728 figment 0xb67eaa5e... BloXroute Max Profit
13351075 8 3636 1914 +1722 ether.fi 0x8527d16c... Ultra Sound
13347127 6 3588 1882 +1706 revolut 0xb67eaa5e... Titan Relay
13351375 3 3540 1835 +1705 blockdaemon 0xb26f9666... Titan Relay
13351092 0 3492 1787 +1705 0x8527d16c... Ultra Sound
13351845 10 3643 1946 +1697 blockdaemon 0x88a53ec4... BloXroute Regulated
13347907 5 3541 1866 +1675 blockdaemon 0xb26f9666... Titan Relay
13351786 13 3665 1993 +1672 ether.fi 0x850b00e0... Flashbots
13348297 10 3615 1946 +1669 0xb26f9666... Titan Relay
13350405 1 3469 1803 +1666 revolut 0x8527d16c... Ultra Sound
13350946 0 3452 1787 +1665 0x8527d16c... Ultra Sound
13348485 15 3689 2025 +1664 0x853b0078... Ultra Sound
13346429 0 3444 1787 +1657 revolut 0x8527d16c... Ultra Sound
13346427 7 3555 1898 +1657 lido 0x853b0078... Ultra Sound
13350976 3 3484 1835 +1649 blockdaemon 0x8a850621... Ultra Sound
13351324 5 3509 1866 +1643 0x8527d16c... Ultra Sound
13349604 6 3514 1882 +1632 0x88857150... Ultra Sound
13352046 8 3534 1914 +1620 0x853b0078... Ultra Sound
13346539 10 3565 1946 +1619 blockdaemon 0x856b0004... Ultra Sound
13349611 0 3382 1787 +1595 blockdaemon_lido 0xb67eaa5e... Titan Relay
13351488 0 3381 1787 +1594 nethermind_lido 0xb26f9666... Titan Relay
13345622 5 3454 1866 +1588 ether.fi 0x8527d16c... Ultra Sound
13345653 8 3477 1914 +1563 blockdaemon_lido 0x855b00e6... Ultra Sound
13350176 5 3415 1866 +1549 gateway.fmas_lido 0x8527d16c... Ultra Sound
13345480 8 3462 1914 +1548 revolut 0x88a53ec4... BloXroute Regulated
13346954 1 3341 1803 +1538 blockdaemon 0xb26f9666... Titan Relay
13350515 5 3402 1866 +1536 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13345295 0 3319 1787 +1532 blockdaemon 0x91a8729e... Ultra Sound
13351738 5 3396 1866 +1530 ether.fi 0x8527d16c... Ultra Sound
13348564 2 3347 1819 +1528 blockdaemon_lido 0xb67eaa5e... Titan Relay
13351129 3 3362 1835 +1527 luno 0x853b0078... Ultra Sound
13345611 7 3424 1898 +1526 0x8a850621... Ultra Sound
13352270 8 3438 1914 +1524 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13350806 5 3389 1866 +1523 0xb67eaa5e... BloXroute Regulated
13352353 2 3341 1819 +1522 0x850b00e0... BloXroute Regulated
13347107 1 3325 1803 +1522 blockdaemon 0xb26f9666... Titan Relay
13351840 0 3306 1787 +1519 p2porg 0x8527d16c... Ultra Sound
13351472 6 3398 1882 +1516 0x823e0146... BloXroute Max Profit
13345686 0 3302 1787 +1515 blockdaemon 0xb26f9666... Titan Relay
13349983 11 3475 1961 +1514 luno 0x853b0078... Ultra Sound
13347134 3 3347 1835 +1512 blockdaemon_lido 0xb67eaa5e... Titan Relay
13345670 3 3347 1835 +1512 blockdaemon_lido 0xb67eaa5e... Titan Relay
13346259 6 3390 1882 +1508 lido Local Local
13349946 0 3290 1787 +1503 blockdaemon 0x805e28e6... BloXroute Regulated
13352272 3 3335 1835 +1500 blockdaemon_lido 0xb26f9666... Titan Relay
13347206 3 3334 1835 +1499 blockdaemon 0xb26f9666... Titan Relay
13347179 4 3348 1850 +1498 luno 0xb67eaa5e... BloXroute Regulated
13350107 8 3411 1914 +1497 ether.fi 0x8527d16c... Ultra Sound
13348382 5 3351 1866 +1485 blockdaemon 0xb26f9666... Titan Relay
13345975 0 3271 1787 +1484 0x852b0070... Agnostic Gnosis
13351918 6 3365 1882 +1483 blockdaemon 0xb67eaa5e... Titan Relay
13347283 0 3269 1787 +1482 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13352139 6 3361 1882 +1479 blockdaemon_lido 0xb67eaa5e... Titan Relay
13347577 3 3311 1835 +1476 0xb26f9666... Titan Relay
13349622 0 3263 1787 +1476 0xb26f9666... BloXroute Regulated
13352280 3 3310 1835 +1475 0x88510a78... BloXroute Regulated
13349008 3 3307 1835 +1472 blockdaemon 0xb26f9666... Titan Relay
13350753 1 3275 1803 +1472 0x88a53ec4... BloXroute Regulated
13345590 3 3306 1835 +1471 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13348381 8 3380 1914 +1466 p2porg 0x856b0004... Agnostic Gnosis
13345464 1 3265 1803 +1462 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13351983 7 3355 1898 +1457 blockdaemon 0xb26f9666... Titan Relay
13348112 0 3240 1787 +1453 0x8527d16c... Ultra Sound
13346849 1 3253 1803 +1450 0x850b00e0... BloXroute Regulated
13350000 0 3235 1787 +1448 blockdaemon 0x82c466b9... BloXroute Regulated
13351973 2 3266 1819 +1447 blockdaemon 0xb26f9666... Titan Relay
13348101 2 3266 1819 +1447 0x850b00e0... BloXroute Max Profit
13351870 5 3313 1866 +1447 0x850b00e0... BloXroute Regulated
13351709 4 3297 1850 +1447 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13349134 0 3233 1787 +1446 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13347912 0 3226 1787 +1439 0x852b0070... Agnostic Gnosis
13347105 1 3237 1803 +1434 gateway.fmas_lido 0x8527d16c... Ultra Sound
13348097 3 3265 1835 +1430 gateway.fmas_lido 0x8527d16c... Ultra Sound
13350227 0 3217 1787 +1430 p2porg 0x852b0070... Agnostic Gnosis
13348142 4 3279 1850 +1429 0xb26f9666... Titan Relay
13349307 5 3292 1866 +1426 0x856b0004... Agnostic Gnosis
13348720 2 3244 1819 +1425 revolut 0x8527d16c... Ultra Sound
13350220 1 3228 1803 +1425 blockdaemon 0xb26f9666... Titan Relay
13352173 1 3228 1803 +1425 0x82c466b9... Flashbots
13348722 2 3243 1819 +1424 revolut 0xb26f9666... Titan Relay
13351353 7 3321 1898 +1423 0xb26f9666... Titan Relay
13347714 5 3288 1866 +1422 gateway.fmas_lido 0x8db2a99d... BloXroute Max Profit
13350160 4 3271 1850 +1421 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13349797 8 3334 1914 +1420 blockdaemon_lido 0xb26f9666... Titan Relay
13345661 0 3206 1787 +1419 0x851b00b1... Flashbots
13345906 4 3269 1850 +1419 0xb67eaa5e... BloXroute Regulated
13351588 8 3332 1914 +1418 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13347790 6 3300 1882 +1418 p2porg 0x8527d16c... Ultra Sound
13350353 5 3281 1866 +1415 luno 0x88510a78... BloXroute Regulated
13345680 0 3200 1787 +1413 revolut 0xb26f9666... Titan Relay
13350953 0 3199 1787 +1412 0x852b0070... Ultra Sound
13346949 12 3389 1977 +1412 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13346324 0 3197 1787 +1410 everstake 0xb26f9666... Aestus
13350249 6 3287 1882 +1405 0x850b00e0... BloXroute Regulated
13351833 8 3318 1914 +1404 blockdaemon 0xb26f9666... Titan Relay
13346679 6 3285 1882 +1403 0x850b00e0... BloXroute Regulated
13349129 4 3253 1850 +1403 0x850b00e0... BloXroute Regulated
13352273 5 3268 1866 +1402 whale_0xdd6c 0xac23f8cc... Flashbots
13350011 6 3282 1882 +1400 0x8527d16c... Ultra Sound
13346329 10 3343 1946 +1397 whale_0x23be 0xb26f9666... BloXroute Max Profit
13352335 6 3279 1882 +1397 0x856b0004... Ultra Sound
13351124 5 3260 1866 +1394 p2porg 0x853b0078... Agnostic Gnosis
13348817 4 3243 1850 +1393 blockdaemon 0xb67eaa5e... BloXroute Regulated
13352258 0 3176 1787 +1389 everstake 0xb26f9666... Titan Relay
13349252 7 3280 1898 +1382 p2porg 0xb26f9666... Titan Relay
13347696 0 3167 1787 +1380 p2porg 0x850b00e0... BloXroute Regulated
13351632 7 3276 1898 +1378 0xb26f9666... EthGas
13350880 5 3243 1866 +1377 everstake 0xb67eaa5e... BloXroute Max Profit
13347942 8 3288 1914 +1374 p2porg 0xb26f9666... BloXroute Max Profit
13346594 4 3224 1850 +1374 stakingfacilities_lido 0x8527d16c... Ultra Sound
13347006 5 3235 1866 +1369 blockdaemon 0x8527d16c... Ultra Sound
13349724 8 3280 1914 +1366 revolut 0x856b0004... Ultra Sound
13345682 0 3153 1787 +1366 0x850b00e0... BloXroute Regulated
13345574 0 3153 1787 +1366 0x823e0146... BloXroute Max Profit
13351904 11 3327 1961 +1366 stakingfacilities_lido 0x860d4173... Ultra Sound
13348027 0 3151 1787 +1364 gateway.fmas_lido 0x91a8729e... Ultra Sound
13351368 0 3150 1787 +1363 0x850b00e0... BloXroute Regulated
13350362 0 3146 1787 +1359 0x88510a78... Flashbots
13347814 5 3225 1866 +1359 p2porg 0x853b0078... Agnostic Gnosis
13350631 10 3302 1946 +1356 p2porg 0xb26f9666... BloXroute Max Profit
13346493 9 3283 1930 +1353 revolut 0x8527d16c... Ultra Sound
13349935 5 3219 1866 +1353 figment 0x8527d16c... Ultra Sound
13346936 1 3153 1803 +1350 0x8527d16c... Ultra Sound
13347538 5 3214 1866 +1348 solo_stakers Local Local
13348595 3 3182 1835 +1347 p2porg 0x8527d16c... Ultra Sound
13346069 6 3229 1882 +1347 p2porg 0x8527d16c... Ultra Sound
13352249 8 3260 1914 +1346 bitstamp 0x8527d16c... Ultra Sound
13346339 6 3228 1882 +1346 0x856b0004... Ultra Sound
13347723 1 3148 1803 +1345 0x850b00e0... BloXroute Regulated
13352086 0 3132 1787 +1345 gateway.fmas_lido 0x852b0070... Ultra Sound
13350885 7 3243 1898 +1345 0xb26f9666... BloXroute Max Profit
13345873 5 3208 1866 +1342 p2porg 0x856b0004... Aestus
13346392 9 3271 1930 +1341 p2porg 0xb67eaa5e... BloXroute Max Profit
13350992 8 3255 1914 +1341 p2porg 0x8527d16c... Ultra Sound
13350244 5 3206 1866 +1340 p2porg 0xb26f9666... BloXroute Max Profit
13352016 10 3278 1946 +1332 0x8db2a99d... BloXroute Max Profit
13345231 0 3119 1787 +1332 0x88a53ec4... BloXroute Regulated
13349545 5 3197 1866 +1331 p2porg 0x853b0078... Aestus
13351850 5 3195 1866 +1329 0xb67eaa5e... BloXroute Max Profit
13351444 11 3290 1961 +1329 figment 0x8527d16c... Ultra Sound
13345939 3 3163 1835 +1328 0x856b0004... Ultra Sound
13349155 3 3163 1835 +1328 p2porg 0x856b0004... Aestus
13350561 2 3147 1819 +1328 stakingfacilities_lido 0x8527d16c... Ultra Sound
13346348 0 3115 1787 +1328 p2porg 0x8527d16c... Ultra Sound
13350598 9 3256 1930 +1326 0x850b00e0... BloXroute Max Profit
13345913 5 3190 1866 +1324 stakingfacilities_lido 0x856b0004... Ultra Sound
13346497 1 3126 1803 +1323 p2porg 0x8527d16c... Ultra Sound
13348501 13 3315 1993 +1322 solo_stakers 0x853b0078... Ultra Sound
13351882 0 3108 1787 +1321 0x851b00b1... BloXroute Max Profit
13351834 3 3155 1835 +1320 figment 0x8527d16c... Ultra Sound
13349331 4 3170 1850 +1320 everstake 0x8527d16c... Ultra Sound
13345685 0 3106 1787 +1319 p2porg 0x856b0004... Aestus
13350171 6 3201 1882 +1319 bitstamp 0x823e0146... Ultra Sound
13350530 0 3105 1787 +1318 everstake 0x823e0146... Flashbots
13351968 0 3104 1787 +1317 nethermind_lido 0x8527d16c... Ultra Sound
13349549 14 3326 2009 +1317 figment Local Local
13350857 15 3341 2025 +1316 blockdaemon 0x88510a78... BloXroute Regulated
13347509 1 3118 1803 +1315 0x856b0004... Aestus
13347268 5 3180 1866 +1314 figment 0x8527d16c... Ultra Sound
13345988 5 3180 1866 +1314 p2porg 0x853b0078... Ultra Sound
13352242 5 3176 1866 +1310 everstake 0x8527d16c... Ultra Sound
13348976 5 3176 1866 +1310 0x88a53ec4... BloXroute Max Profit
13347220 1 3112 1803 +1309 0x88a53ec4... BloXroute Regulated
13350505 3 3143 1835 +1308 figment 0xb26f9666... Titan Relay
13346281 13 3301 1993 +1308 luno 0x853b0078... Ultra Sound
13350129 8 3218 1914 +1304 0x853b0078... Agnostic Gnosis
13349477 8 3215 1914 +1301 figment 0x8527d16c... Ultra Sound
13348270 0 3086 1787 +1299 p2porg 0xb7c5e609... BloXroute Max Profit
13351613 9 3228 1930 +1298 abyss_finance 0xb26f9666... BloXroute Max Profit
13352214 5 3164 1866 +1298 bitstamp 0x853b0078... Ultra Sound
13346511 14 3306 2009 +1297 p2porg 0x856b0004... Ultra Sound
13346299 0 3083 1787 +1296 0xb26f9666... Aestus
13347230 2 3113 1819 +1294 0x8527d16c... Ultra Sound
13347341 8 3206 1914 +1292 p2porg 0xb26f9666... BloXroute Regulated
13351076 3 3126 1835 +1291 0x853b0078... BloXroute Max Profit
13345252 8 3205 1914 +1291 0x850b00e0... BloXroute Max Profit
13345693 0 3078 1787 +1291 0x850b00e0... BloXroute Max Profit
13347155 13 3283 1993 +1290 p2porg Local Local
13351244 3 3122 1835 +1287 gateway.fmas_lido 0x8527d16c... Ultra Sound
13350333 6 3168 1882 +1286 0x853b0078... Agnostic Gnosis
13346477 7 3183 1898 +1285 0xb67eaa5e... BloXroute Regulated
13350710 5 3151 1866 +1285 0xb26f9666... BloXroute Max Profit
13349848 1 3087 1803 +1284 abyss_finance 0xb26f9666... Titan Relay
13348324 1 3087 1803 +1284 whale_0xdd6c 0x88a53ec4... BloXroute Max Profit
13352115 0 3070 1787 +1283 everstake 0x8527d16c... Ultra Sound
13349308 6 3163 1882 +1281 0xb67eaa5e... BloXroute Max Profit
13345335 5 3147 1866 +1281 p2porg 0x856b0004... Agnostic Gnosis
13348108 14 3288 2009 +1279 0xb67eaa5e... BloXroute Regulated
13349580 6 3161 1882 +1279 0x88a53ec4... BloXroute Max Profit
13350210 6 3160 1882 +1278 p2porg 0xb26f9666... BloXroute Regulated
13347558 12 3254 1977 +1277 0x88a53ec4... BloXroute Regulated
13350622 3 3111 1835 +1276 everstake 0x8db2a99d... Flashbots
13347266 3 3111 1835 +1276 0x8db2a99d... Flashbots
13347549 1 3078 1803 +1275 solo_stakers 0x8a850621... Ultra Sound
13351408 8 3189 1914 +1275 stakingfacilities_lido 0x8db2a99d... Ultra Sound
13351422 6 3157 1882 +1275 0x850b00e0... BloXroute Max Profit
13351360 5 3140 1866 +1274 coinbase 0x8a850621... Ultra Sound
13348770 6 3155 1882 +1273 p2porg 0xb26f9666... BloXroute Regulated
13348446 3 3107 1835 +1272 0x855b00e6... Flashbots
13348726 3 3104 1835 +1269 p2porg 0xb26f9666... BloXroute Regulated
13345387 6 3151 1882 +1269 0x850b00e0... BloXroute Max Profit
13351419 4 3119 1850 +1269 0x850b00e0... BloXroute Max Profit
13346006 6 3150 1882 +1268 Local Local
13350889 4 3116 1850 +1266 gateway.fmas_lido 0x8db2a99d... Flashbots
13345404 0 3051 1787 +1264 gateway.fmas_lido 0x91a8729e... Ultra Sound
13347595 0 3050 1787 +1263 blockscape_lido 0x8527d16c... Ultra Sound
13348096 7 3160 1898 +1262 figment 0x850b00e0... BloXroute Max Profit
13346321 11 3221 1961 +1260 stakingfacilities_lido 0x8527d16c... Ultra Sound
13346814 3 3093 1835 +1258 0x88a53ec4... BloXroute Max Profit
13351008 10 3204 1946 +1258 everstake 0xb26f9666... Titan Relay
13350844 1 3061 1803 +1258 gateway.fmas_lido 0x8527d16c... Ultra Sound
13348110 13 3249 1993 +1256 figment 0xb67eaa5e... BloXroute Max Profit
13346549 0 3042 1787 +1255 Local Local
13348277 11 3214 1961 +1253 everstake 0x8527d16c... Ultra Sound
13347884 0 3039 1787 +1252 everstake 0xb26f9666... Titan Relay
13348920 1 3052 1803 +1249 gateway.fmas_lido 0x856b0004... Ultra Sound
13351134 0 3036 1787 +1249 0x856b0004... Aestus
Total anomalies: 256

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})