Mon, Feb 9, 2026 Latest

Propagation anomalies

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-09' AND slot_start_date_time < '2026-02-09'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,175
MEV blocks: 6,697 (93.3%)
Local blocks: 478 (6.7%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1798.3 + 16.56 × blob_count (R² = 0.013)
Residual σ = 646.0ms
Anomalies (>2σ slow): 227 (3.2%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13653879 0 8430 1798 +6632 whale_0x3212 Local Local
13653403 0 7797 1798 +5999 solo_stakers Local Local
13649728 0 5679 1798 +3881 Local Local
13653332 0 4950 1798 +3152 ether.fi Local Local
13651776 0 4589 1798 +2791 Local Local
13650903 0 4536 1798 +2738 Local Local
13651437 2 4414 1831 +2583 solo_stakers Local Local
13647936 6 4424 1898 +2526 upbit Local Local
13648399 0 4075 1798 +2277 blockdaemon Local Local
13650857 0 3991 1798 +2193 whale_0xba8f Local Local
13648063 12 4108 1997 +2111 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13650701 0 3891 1798 +2093 Local Local
13652622 0 3860 1798 +2062 everstake 0x99dbe3e8... Agnostic Gnosis
13648909 8 3843 1931 +1912 ether.fi 0x88a53ec4... BloXroute Max Profit
13650434 0 3697 1798 +1899 nethermind_lido Local Local
13647687 0 3680 1798 +1882 revolut Local Local
13649836 5 3746 1881 +1865 coinbase 0x853b0078... Aestus
13651120 2 3679 1831 +1848 nethermind_lido 0x853b0078... BloXroute Max Profit
13650462 0 3634 1798 +1836 nethermind_lido Local Local
13653924 3 3682 1848 +1834 Local Local
13654615 1 3620 1815 +1805 0x8527d16c... Ultra Sound
13649878 1 3611 1815 +1796 ether.fi 0x853b0078... Ultra Sound
13649984 3 3637 1848 +1789 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13653496 1 3578 1815 +1763 0x88857150... Ultra Sound
13650781 1 3576 1815 +1761 0x8527d16c... Ultra Sound
13648910 0 3558 1798 +1760 Local Local
13652941 3 3606 1848 +1758 0x856b0004... Ultra Sound
13654618 1 3558 1815 +1743 0x8527d16c... Ultra Sound
13652946 8 3673 1931 +1742 0x8527d16c... Ultra Sound
13648044 5 3621 1881 +1740 0x88857150... Ultra Sound
13653910 1 3534 1815 +1719 blockdaemon 0x8527d16c... Ultra Sound
13648059 11 3698 1980 +1718 ether.fi 0x853b0078... Agnostic Gnosis
13654048 10 3679 1964 +1715 nethermind_lido 0x853b0078... Agnostic Gnosis
13653715 14 3743 2030 +1713 0x856b0004... Ultra Sound
13651462 4 3575 1865 +1710 0x856b0004... Ultra Sound
13651214 5 3587 1881 +1706 0x853b0078... Titan Relay
13653152 0 3500 1798 +1702 nethermind_lido 0xb211df49... Agnostic Gnosis
13652893 9 3648 1947 +1701 0x8527d16c... Ultra Sound
13648779 4 3559 1865 +1694 nethermind_lido 0x856b0004... Agnostic Gnosis
13653323 8 3617 1931 +1686 0x8527d16c... Ultra Sound
13654218 1 3495 1815 +1680 nethermind_lido 0xb26f9666... Titan Relay
13653282 0 3472 1798 +1674 0x857b0038... Ultra Sound
13648358 3 3518 1848 +1670 nethermind_lido 0x850b00e0... BloXroute Max Profit
13654644 5 3549 1881 +1668 0x8527d16c... Ultra Sound
13651913 0 3466 1798 +1668 ether.fi 0x851b00b1... BloXroute Max Profit
13652756 11 3636 1980 +1656 blockdaemon_lido 0x88857150... Ultra Sound
13654688 0 3443 1798 +1645 bitstamp 0x853b0078... Agnostic Gnosis
13649701 5 3523 1881 +1642 0x8a850621... Titan Relay
13651359 6 3534 1898 +1636 luno 0x856b0004... Ultra Sound
13651581 1 3441 1815 +1626 blockdaemon Local Local
13648198 0 3416 1798 +1618 everstake 0x853b0078... Agnostic Gnosis
13648090 7 3525 1914 +1611 figment 0xb26f9666... BloXroute Regulated
13647957 7 3517 1914 +1603 nethermind_lido 0x850b00e0... BloXroute Max Profit
13648324 0 3399 1798 +1601 nethermind_lido 0x852b0070... Aestus
13654031 5 3474 1881 +1593 lido 0x8db2a99d... BloXroute Max Profit
13648232 3 3440 1848 +1592 0xb26f9666... Titan Relay
13654510 5 3465 1881 +1584 0xb67eaa5e... BloXroute Regulated
13648772 3 3431 1848 +1583 0x8a850621... Ultra Sound
13647903 3 3427 1848 +1579 0x850b00e0... BloXroute Max Profit
13648853 3 3426 1848 +1578 everstake 0xb26f9666... Titan Relay
13648101 2 3409 1831 +1578 everstake 0x856b0004... Ultra Sound
13651211 0 3370 1798 +1572 ether.fi 0x8527d16c... Ultra Sound
13652800 0 3368 1798 +1570 stakefish Local Local
13650381 0 3362 1798 +1564 everstake 0xb26f9666... Titan Relay
13651140 6 3459 1898 +1561 nethermind_lido 0x856b0004... Aestus
13652633 0 3356 1798 +1558 0x852b0070... Ultra Sound
13651840 0 3353 1798 +1555 stakingfacilities_lido 0xb26f9666... Titan Relay
13651480 5 3432 1881 +1551 whale_0xdd6c 0x8527d16c... Ultra Sound
13651788 4 3412 1865 +1547 everstake 0x8527d16c... Ultra Sound
13648891 0 3343 1798 +1545 blockdaemon 0xb26f9666... Titan Relay
13647989 0 3339 1798 +1541 nethermind_lido 0x88a53ec4... BloXroute Max Profit
13650223 6 3428 1898 +1530 0x88510a78... BloXroute Regulated
13649276 9 3477 1947 +1530 0xb4ce6162... Ultra Sound
13648764 8 3454 1931 +1523 0xb67eaa5e... BloXroute Regulated
13654524 7 3431 1914 +1517 blockdaemon 0xb67eaa5e... BloXroute Regulated
13649692 12 3511 1997 +1514 blockdaemon 0x850b00e0... BloXroute Regulated
13654040 2 3341 1831 +1510 everstake 0x853b0078... Aestus
13649749 0 3307 1798 +1509 ether.fi 0x926b7905... Flashbots
13647710 15 3551 2047 +1504 0x8a850621... Ultra Sound
13651382 5 3385 1881 +1504 0x8a850621... Titan Relay
13653184 0 3301 1798 +1503 whale_0xe389 0x852b0070... BloXroute Max Profit
13651813 0 3300 1798 +1502 nethermind_lido 0x852b0070... BloXroute Max Profit
13652381 0 3300 1798 +1502 0x857b0038... Ultra Sound
13647677 2 3323 1831 +1492 blockdaemon 0x88857150... Ultra Sound
13648959 14 3520 2030 +1490 0xb26f9666... Titan Relay
13650145 3 3337 1848 +1489 everstake 0xb26f9666... Aestus
13651981 5 3370 1881 +1489 blockdaemon_lido 0xb67eaa5e... Titan Relay
13653866 8 3417 1931 +1486 blockdaemon 0x8a850621... Titan Relay
13647947 11 3461 1980 +1481 ether.fi 0x8527d16c... Ultra Sound
13651221 8 3409 1931 +1478 solo_stakers 0x856b0004... Aestus
13650659 0 3276 1798 +1478 nethermind_lido 0x88a53ec4... BloXroute Max Profit
13649824 4 3339 1865 +1474 everstake 0xb26f9666... Titan Relay
13652981 1 3289 1815 +1474 0x88857150... Ultra Sound
13649885 8 3403 1931 +1472 0xb26f9666... Titan Relay
13648115 3 3320 1848 +1472 ether.fi 0x856b0004... Agnostic Gnosis
13653905 0 3268 1798 +1470 everstake 0xb26f9666... BloXroute Max Profit
13647951 0 3267 1798 +1469 everstake 0x91a8729e... BloXroute Max Profit
13648318 0 3266 1798 +1468 blockdaemon 0xb26f9666... Titan Relay
13651428 0 3263 1798 +1465 everstake 0x88a53ec4... BloXroute Max Profit
13650824 11 3444 1980 +1464 lido 0x850b00e0... BloXroute Max Profit
13649027 4 3327 1865 +1462 everstake 0x853b0078... Agnostic Gnosis
13654695 0 3260 1798 +1462 luno 0x8527d16c... Ultra Sound
13649437 5 3339 1881 +1458 everstake 0x853b0078... Agnostic Gnosis
13650330 6 3355 1898 +1457 0x856b0004... Ultra Sound
13648434 13 3467 2014 +1453 0x88a53ec4... BloXroute Regulated
13653717 1 3266 1815 +1451 0x8db2a99d... BloXroute Max Profit
13651110 6 3348 1898 +1450 blockdaemon 0x853b0078... Ultra Sound
13654432 2 3281 1831 +1450 ether.fi 0xb26f9666... Aestus
13651178 1 3263 1815 +1448 revolut 0x853b0078... Ultra Sound
13650310 4 3312 1865 +1447 blockdaemon 0x850b00e0... BloXroute Regulated
13649776 18 3542 2096 +1446 0x857b0038... Ultra Sound
13649678 8 3375 1931 +1444 blockdaemon 0xb4ce6162... Ultra Sound
13652095 14 3474 2030 +1444 blockdaemon_lido 0xb67eaa5e... Titan Relay
13649353 0 3242 1798 +1444 everstake 0x91a8729e... Aestus
13649971 0 3242 1798 +1444 0xac23f8cc... BloXroute Max Profit
13648872 0 3241 1798 +1443 everstake 0x853b0078... Agnostic Gnosis
13653714 0 3240 1798 +1442 blockdaemon_lido 0xb26f9666... Titan Relay
13649993 1 3254 1815 +1439 blockdaemon 0xb4ce6162... Ultra Sound
13650100 3 3281 1848 +1433 blockdaemon 0x8527d16c... Ultra Sound
13654635 6 3328 1898 +1430 blockdaemon 0x856b0004... Ultra Sound
13651080 12 3426 1997 +1429 everstake 0x88a53ec4... BloXroute Max Profit
13649697 6 3321 1898 +1423 blockdaemon 0x8527d16c... Ultra Sound
13650859 5 3302 1881 +1421 0x850b00e0... BloXroute Max Profit
13653982 0 3219 1798 +1421 revolut 0xb26f9666... Titan Relay
13652711 0 3219 1798 +1421 0xb26f9666... Titan Relay
13649700 5 3301 1881 +1420 0x91b123d8... BloXroute Regulated
13654068 0 3218 1798 +1420 0xb26f9666... Titan Relay
13649650 1 3234 1815 +1419 everstake 0x88a53ec4... BloXroute Regulated
13650952 5 3299 1881 +1418 everstake 0x856b0004... Aestus
13653949 7 3332 1914 +1418 everstake 0x855b00e6... BloXroute Max Profit
13648767 0 3216 1798 +1418 0xb26f9666... Titan Relay
13652889 2 3249 1831 +1418 ether.fi 0x8527d16c... Ultra Sound
13652287 6 3312 1898 +1414 0x8527d16c... Ultra Sound
13649291 3 3261 1848 +1413 0x853b0078... Ultra Sound
13651301 7 3326 1914 +1412 everstake 0x853b0078... Ultra Sound
13651432 1 3225 1815 +1410 0xb26f9666... Titan Relay
13653420 0 3207 1798 +1409 everstake 0x8527d16c... Ultra Sound
13649872 5 3288 1881 +1407 revolut 0x82c466b9... BloXroute Regulated
13647673 5 3283 1881 +1402 solo_stakers 0x853b0078... BloXroute Max Profit
13650047 5 3282 1881 +1401 0x850b00e0... BloXroute Max Profit
13652789 1 3212 1815 +1397 everstake 0xb67eaa5e... BloXroute Max Profit
13648596 8 3324 1931 +1393 ether.fi 0x8527d16c... Ultra Sound
13654309 0 3191 1798 +1393 everstake 0x8527d16c... Ultra Sound
13648749 10 3352 1964 +1388 blockdaemon 0x853b0078... Ultra Sound
13653613 0 3185 1798 +1387 everstake 0xb26f9666... Titan Relay
13652057 5 3267 1881 +1386 luno 0x88857150... Ultra Sound
13647798 9 3333 1947 +1386 whale_0xdd6c 0x853b0078... Aestus
13652458 13 3397 2014 +1383 p2porg 0x853b0078... Aestus
13648221 1 3198 1815 +1383 0xb26f9666... Titan Relay
13651436 8 3311 1931 +1380 blockdaemon_lido 0x8527d16c... Ultra Sound
13651390 8 3309 1931 +1378 blockdaemon_lido 0xb26f9666... Titan Relay
13647653 11 3356 1980 +1376 0xb67eaa5e... BloXroute Max Profit
13651617 1 3189 1815 +1374 everstake 0x850b00e0... BloXroute Max Profit
13647694 3 3222 1848 +1374 blockdaemon_lido 0xb26f9666... Titan Relay
13652588 16 3435 2063 +1372 kraken 0x82c466b9... EthGas
13648850 5 3251 1881 +1370 0xb67eaa5e... BloXroute Max Profit
13652626 0 3167 1798 +1369 0x88857150... Ultra Sound
13649882 10 3332 1964 +1368 blockdaemon_lido 0x8527d16c... Ultra Sound
13652339 5 3249 1881 +1368 bloxstaking 0xb26f9666... Titan Relay
13649293 4 3232 1865 +1367 everstake 0x853b0078... BloXroute Regulated
13650550 9 3312 1947 +1365 0x853b0078... Ultra Sound
13651530 0 3162 1798 +1364 0x8527d16c... Ultra Sound
13651472 5 3244 1881 +1363 nethermind_lido 0x856b0004... Agnostic Gnosis
13652168 1 3177 1815 +1362 0xa230e2cf... BloXroute Max Profit
13649826 3 3210 1848 +1362 ether.fi 0xb26f9666... BloXroute Regulated
13651439 3 3210 1848 +1362 0xb26f9666... Titan Relay
13653610 3 3209 1848 +1361 everstake 0xb26f9666... Titan Relay
13654205 5 3242 1881 +1361 p2porg 0x8527d16c... Ultra Sound
13648517 3 3208 1848 +1360 blockdaemon_lido 0x8527d16c... Ultra Sound
13650492 0 3158 1798 +1360 0x8527d16c... Ultra Sound
13653310 9 3301 1947 +1354 blockdaemon_lido 0xb26f9666... Titan Relay
13651844 5 3231 1881 +1350 0x860d4173... BloXroute Max Profit
13648227 8 3278 1931 +1347 solo_stakers Local Local
13653917 0 3141 1798 +1343 0x91a8729e... Aestus
13651186 10 3305 1964 +1341 p2porg 0x856b0004... Aestus
13653642 0 3139 1798 +1341 0x8527d16c... Ultra Sound
13653054 1 3152 1815 +1337 p2porg 0xb26f9666... BloXroute Max Profit
13651810 15 3383 2047 +1336 luno 0x850b00e0... Ultra Sound
13652249 19 3448 2113 +1335 ether.fi 0x88a53ec4... BloXroute Regulated
13652332 0 3132 1798 +1334 0x8a850621... Ultra Sound
13650186 13 3346 2014 +1332 blockdaemon 0xb26f9666... Titan Relay
13650480 5 3213 1881 +1332 0x8527d16c... Ultra Sound
13652248 0 3128 1798 +1330 0x8527d16c... Ultra Sound
13651247 1 3144 1815 +1329 everstake 0x88a53ec4... BloXroute Max Profit
13649661 0 3125 1798 +1327 nethermind_lido Local Local
13650482 8 3257 1931 +1326 0x8527d16c... Ultra Sound
13648072 1 3141 1815 +1326 p2porg 0xb26f9666... BloXroute Max Profit
13654581 2 3155 1831 +1324 nethermind_lido 0x8db2a99d... BloXroute Max Profit
13652445 13 3335 2014 +1321 nethermind_lido 0x853b0078... Agnostic Gnosis
13649618 0 3116 1798 +1318 p2porg 0x91a8729e... BloXroute Max Profit
13654629 1 3132 1815 +1317 everstake 0x8527d16c... Ultra Sound
13654233 3 3163 1848 +1315 p2porg 0x856b0004... Aestus
13654052 5 3196 1881 +1315 everstake 0xb67eaa5e... BloXroute Max Profit
13652184 0 3113 1798 +1315 0x851b00b1... BloXroute Max Profit
13649028 6 3210 1898 +1312 0x853b0078... Agnostic Gnosis
13651040 3 3160 1848 +1312 0x855b00e6... BloXroute Max Profit
13650502 7 3226 1914 +1312 0x856b0004... Ultra Sound
13648277 8 3241 1931 +1310 0x856b0004... Aestus
13654757 7 3224 1914 +1310 everstake 0x8527d16c... Ultra Sound
13654303 11 3290 1980 +1310 0x8527d16c... Ultra Sound
13648314 3 3156 1848 +1308 0x8527d16c... Ultra Sound
13650227 0 3106 1798 +1308 blockdaemon Local Local
13648809 1 3122 1815 +1307 bitstamp 0x8527d16c... Ultra Sound
13648954 1 3122 1815 +1307 everstake 0xb26f9666... Titan Relay
13652276 3 3154 1848 +1306 p2porg 0x8527d16c... Ultra Sound
13654378 5 3187 1881 +1306 0x855b00e6... BloXroute Max Profit
13647862 6 3203 1898 +1305 0x88a53ec4... BloXroute Regulated
13651658 0 3103 1798 +1305 0x851b00b1... BloXroute Max Profit
13649296 8 3234 1931 +1303 0x88a53ec4... BloXroute Max Profit
13650068 0 3101 1798 +1303 figment 0x91a8729e... BloXroute Max Profit
13648161 9 3250 1947 +1303 everstake 0x850b00e0... BloXroute Max Profit
13654796 1 3115 1815 +1300 nethermind_lido 0x853b0078... Ultra Sound
13652132 17 3379 2080 +1299 0x88a53ec4... BloXroute Regulated
13654475 3 3147 1848 +1299 0xb26f9666... BloXroute Regulated
13650264 12 3296 1997 +1299 p2porg 0x8527d16c... Ultra Sound
13652027 16 3361 2063 +1298 nethermind_lido 0x853b0078... Ultra Sound
13654414 14 3327 2030 +1297 p2porg 0x856b0004... Aestus
13654411 7 3211 1914 +1297 ether.fi 0x88857150... Ultra Sound
13650618 0 3094 1798 +1296 0x856b0004... Agnostic Gnosis
13652252 6 3193 1898 +1295 nethermind_lido 0x88857150... Ultra Sound
13651693 8 3226 1931 +1295 p2porg 0x856b0004... Ultra Sound
13647863 3 3143 1848 +1295 0xb67eaa5e... BloXroute Regulated
13654216 0 3093 1798 +1295 0x851b00b1... Flashbots
13652602 6 3192 1898 +1294 0xb4ce6162... Ultra Sound
13649065 8 3224 1931 +1293 0x88a53ec4... BloXroute Regulated
13652326 9 3240 1947 +1293 kelp 0x8527d16c... Ultra Sound
13652159 6 3190 1898 +1292 0x850b00e0... BloXroute Regulated
Total anomalies: 227

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})