Wed, Jan 28, 2026

Propagation anomalies - 2026-01-28

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-28' AND slot_start_date_time < '2026-01-28'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,182
MEV blocks: 6,719 (93.6%)
Local blocks: 463 (6.4%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1807.4 + 21.12 × blob_count (R² = 0.017)
Residual σ = 643.5ms
Anomalies (>2σ slow): 209 (2.9%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13568140 0 7320 1807 +5513 cryptomanufaktur_lido Local Local
13566050 1 6813 1829 +4984 dsrv_lido Local Local
13567074 0 6499 1807 +4692 abyss_finance Local Local
13564960 0 6001 1807 +4194 abyss_finance Local Local
13566040 0 4902 1807 +3095 Local Local
13565023 6 4402 1934 +2468 solo_stakers Local Local
13566414 0 4230 1807 +2423 nethermind_lido Local Local
13568109 0 4095 1807 +2288 blockdaemon Local Local
13563632 0 4072 1807 +2265 Local Local
13562432 0 4012 1807 +2205 stakefish Local Local
13567023 5 4117 1913 +2204 everstake 0xb26f9666... Titan Relay
13561440 0 3971 1807 +2164 stakingfacilities_lido Local Local
13564449 0 3925 1807 +2118 simplystaking_lido Local Local
13565763 1 3857 1829 +2028 ether.fi Local Local
13566080 6 3924 1934 +1990 0x8527d16c... Ultra Sound
13568096 2 3832 1850 +1982 0x823e0146... BloXroute Max Profit
13563727 1 3796 1829 +1967 whale_0xb83e 0x823e0146... BloXroute Max Profit
13565632 3 3742 1871 +1871 binance 0xb67eaa5e... Titan Relay
13567008 9 3814 1998 +1816 whale_0xdd6c 0x88a53ec4... BloXroute Max Profit
13562309 0 3617 1807 +1810 0x88a53ec4... BloXroute Regulated
13565400 1 3627 1829 +1798 blockdaemon 0x850b00e0... BloXroute Regulated
13564032 3 3663 1871 +1792 bitstamp 0x8db2a99d... Flashbots
13568106 8 3765 1976 +1789 everstake 0xb26f9666... Titan Relay
13566958 7 3724 1955 +1769 ether.fi 0xb67eaa5e... EthGas
13563641 10 3786 2019 +1767 0x8527d16c... Ultra Sound
13563488 0 3569 1807 +1762 0x88a53ec4... BloXroute Regulated
13565352 0 3568 1807 +1761 blockdaemon 0x82c466b9... BloXroute Regulated
13566672 1 3586 1829 +1757 0x88857150... Ultra Sound
13561795 0 3562 1807 +1755 revolut 0x91a8729e... BloXroute Regulated
13568053 6 3686 1934 +1752 ether.fi 0xb26f9666... EthGas
13567843 9 3748 1998 +1750 blockdaemon 0xb26f9666... Titan Relay
13561827 9 3744 1998 +1746 0x850b00e0... BloXroute Regulated
13562034 9 3737 1998 +1739 0xb26f9666... Titan Relay
13567652 6 3672 1934 +1738 0x8527d16c... Ultra Sound
13562357 2 3575 1850 +1725 figment 0x853b0078... Ultra Sound
13561732 7 3680 1955 +1725 0xb26f9666... Titan Relay
13567464 8 3679 1976 +1703 stakefish_lido 0x88857150... Ultra Sound
13563954 5 3614 1913 +1701 0xb67eaa5e... BloXroute Regulated
13566463 7 3636 1955 +1681 0x8527d16c... Ultra Sound
13564095 6 3609 1934 +1675 revolut 0x856b0004... Ultra Sound
13565273 8 3651 1976 +1675 blockdaemon 0xb26f9666... Titan Relay
13562072 6 3605 1934 +1671 0x856b0004... Ultra Sound
13565929 9 3643 1998 +1645 blockdaemon 0xb26f9666... Titan Relay
13563651 6 3566 1934 +1632 blockdaemon 0x853b0078... Ultra Sound
13564165 6 3560 1934 +1626 blockdaemon 0x857b0038... Ultra Sound
13566439 8 3584 1976 +1608 ether.fi 0x8527d16c... Ultra Sound
13564398 5 3511 1913 +1598 blockdaemon Local Local
13563183 7 3550 1955 +1595 0x88a53ec4... BloXroute Regulated
13564124 1 3417 1829 +1588 everstake 0xb26f9666... Titan Relay
13562304 4 3480 1892 +1588 0x88a53ec4... BloXroute Regulated
13561341 7 3542 1955 +1587 revolut 0x856b0004... Ultra Sound
13566915 0 3394 1807 +1587 0x99dbe3e8... Aestus
13566719 1 3415 1829 +1586 0x88a53ec4... BloXroute Max Profit
13565706 6 3519 1934 +1585 figment 0xb67eaa5e... BloXroute Regulated
13568067 0 3392 1807 +1585 0x91a8729e... Aestus
13566054 5 3497 1913 +1584 blockdaemon 0x8a850621... Ultra Sound
13563267 5 3493 1913 +1580 everstake 0x88a53ec4... BloXroute Max Profit
13566911 0 3387 1807 +1580 whale_0x8e69 0x99dbe3e8... Ultra Sound
13566247 3 3449 1871 +1578 blockdaemon 0xb26f9666... Titan Relay
13564184 2 3424 1850 +1574 everstake 0x853b0078... BloXroute Max Profit
13567847 7 3529 1955 +1574 ether.fi 0xac23f8cc... BloXroute Max Profit
13565472 0 3369 1807 +1562 p2porg 0xb26f9666... Titan Relay
13567904 0 3365 1807 +1558 bitstamp 0xac23f8cc... BloXroute Max Profit
13563008 1 3386 1829 +1557 revolut 0x853b0078... Ultra Sound
13567006 6 3486 1934 +1552 0x8a850621... Ultra Sound
13562035 5 3461 1913 +1548 everstake 0xb26f9666... Titan Relay
13561207 6 3467 1934 +1533 0x88a53ec4... BloXroute Regulated
13566229 3 3403 1871 +1532 everstake 0xb26f9666... Titan Relay
13565280 9 3529 1998 +1531 0x853b0078... Aestus
13568158 8 3505 1976 +1529 0xb67eaa5e... BloXroute Regulated
13561232 15 3651 2124 +1527 0x8527d16c... Ultra Sound
13566385 6 3451 1934 +1517 everstake 0x8527d16c... Ultra Sound
13563393 4 3406 1892 +1514 blockdaemon_lido 0x88857150... Ultra Sound
13564518 8 3489 1976 +1513 blockdaemon_lido 0xb67eaa5e... Titan Relay
13564029 1 3329 1829 +1500 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13567745 1 3326 1829 +1497 everstake 0xb26f9666... Titan Relay
13561431 4 3388 1892 +1496 luno 0x88510a78... BloXroute Regulated
13562233 4 3386 1892 +1494 blockdaemon_lido 0xb67eaa5e... BloXroute Max Profit
13563528 2 3337 1850 +1487 luno 0x88a53ec4... BloXroute Regulated
13567952 1 3315 1829 +1486 blockdaemon_lido 0xb26f9666... Titan Relay
13561260 6 3419 1934 +1485 everstake 0xb26f9666... Titan Relay
13565917 6 3418 1934 +1484 blockdaemon_lido 0xb67eaa5e... Titan Relay
13566535 3 3352 1871 +1481 everstake 0xb67eaa5e... BloXroute Regulated
13561210 3 3345 1871 +1474 blockdaemon 0x82c466b9... BloXroute Regulated
13564332 4 3364 1892 +1472 everstake 0xb26f9666... Titan Relay
13567007 0 3277 1807 +1470 Local Local
13562807 8 3445 1976 +1469 everstake 0xb67eaa5e... BloXroute Regulated
13567647 3 3339 1871 +1468 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13566807 3 3338 1871 +1467 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13565848 9 3463 1998 +1465 blockdaemon_lido 0xb67eaa5e... Titan Relay
13566843 0 3272 1807 +1465 blockdaemon 0xba003e46... Ultra Sound
13566733 5 3376 1913 +1463 blockdaemon 0xb67eaa5e... BloXroute Regulated
13563417 4 3353 1892 +1461 blockdaemon_lido 0xb67eaa5e... Titan Relay
13563611 5 3370 1913 +1457 everstake 0x853b0078... Aestus
13568304 1 3281 1829 +1452 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13563142 4 3342 1892 +1450 everstake 0x8527d16c... Ultra Sound
13567205 1 3275 1829 +1446 blockdaemon_lido 0x850b00e0... BloXroute Max Profit
13564460 0 3248 1807 +1441 everstake 0xa10f2964... Ultra Sound
13564754 0 3248 1807 +1441 everstake 0x852b0070... BloXroute Max Profit
13561604 0 3247 1807 +1440 everstake 0xb26f9666... Titan Relay
13564875 15 3560 2124 +1436 p2porg 0xb26f9666... BloXroute Regulated
13561999 7 3391 1955 +1436 blockdaemon 0xb67eaa5e... Titan Relay
13562250 8 3411 1976 +1435 everstake 0x823e0146... BloXroute Max Profit
13564413 2 3284 1850 +1434 everstake 0xb26f9666... Titan Relay
13565179 9 3429 1998 +1431 everstake 0x850b00e0... BloXroute Max Profit
13565862 3 3301 1871 +1430 everstake 0x8527d16c... Ultra Sound
13564896 2 3275 1850 +1425 0xb26f9666... BloXroute Max Profit
13562629 4 3317 1892 +1425 0x860d4173... BloXroute Max Profit
13565324 5 3337 1913 +1424 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13566188 0 3228 1807 +1421 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13564730 1 3246 1829 +1417 0xb26f9666... Aestus
13567817 1 3246 1829 +1417 0x850b00e0... BloXroute Regulated
13564504 11 3457 2040 +1417 everstake 0x855b00e6... BloXroute Max Profit
13562741 1 3245 1829 +1416 0x88a53ec4... BloXroute Max Profit
13566600 2 3266 1850 +1416 everstake 0xb26f9666... Titan Relay
13568160 7 3369 1955 +1414 everstake 0xb26f9666... Titan Relay
13561847 4 3305 1892 +1413 0xb26f9666... BloXroute Max Profit
13563290 3 3283 1871 +1412 blockdaemon 0xb26f9666... Titan Relay
13563389 6 3345 1934 +1411 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13568341 0 3218 1807 +1411 0x88a53ec4... BloXroute Regulated
13565256 9 3407 1998 +1409 0xb26f9666... Titan Relay
13562408 1 3234 1829 +1405 0x8527d16c... Ultra Sound
13567651 12 3462 2061 +1401 blockdaemon 0x8a850621... Ultra Sound
13561429 1 3229 1829 +1400 ether.fi 0xb67eaa5e... EthGas
13561467 1 3229 1829 +1400 everstake 0xb26f9666... Titan Relay
13564727 0 3204 1807 +1397 everstake 0x852b0070... Agnostic Gnosis
13562786 0 3202 1807 +1395 figment 0x926b7905... Flashbots
13565624 1 3223 1829 +1394 everstake 0xb26f9666... Titan Relay
13565582 11 3434 2040 +1394 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13565162 6 3327 1934 +1393 everstake 0xb67eaa5e... BloXroute Regulated
13563921 2 3242 1850 +1392 blockdaemon 0x8527d16c... Ultra Sound
13563452 9 3389 1998 +1391 blockdaemon 0x856b0004... Ultra Sound
13564326 7 3346 1955 +1391 blockdaemon_lido 0xb26f9666... Titan Relay
13563694 2 3240 1850 +1390 revolut 0x88510a78... BloXroute Regulated
13566201 12 3442 2061 +1381 nethermind_lido 0xb67eaa5e... BloXroute Max Profit
13564145 6 3315 1934 +1381 everstake 0x8527d16c... Ultra Sound
13564305 6 3313 1934 +1379 luno 0x82c466b9... BloXroute Regulated
13566517 8 3355 1976 +1379 0x88a53ec4... BloXroute Max Profit
13562750 5 3289 1913 +1376 0xb67eaa5e... BloXroute Regulated
13567930 6 3309 1934 +1375 blockdaemon 0x853b0078... Ultra Sound
13565521 6 3309 1934 +1375 blockdaemon 0xb26f9666... Titan Relay
13565987 3 3245 1871 +1374 everstake 0x853b0078... Flashbots
13563985 3 3244 1871 +1373 0x91b123d8... Flashbots
13565149 6 3306 1934 +1372 bitstamp 0xb67eaa5e... BloXroute Max Profit
13563550 9 3369 1998 +1371 0x82c466b9... BloXroute Regulated
13567429 6 3305 1934 +1371 everstake 0x8527d16c... Ultra Sound
13562613 0 3178 1807 +1371 p2porg 0x99dbe3e8... Aestus
13565908 0 3177 1807 +1370 0xb67eaa5e... BloXroute Max Profit
13567298 10 3380 2019 +1361 stakingfacilities_lido 0x88a53ec4... BloXroute Regulated
13565693 8 3333 1976 +1357 blockdaemon_lido 0x88857150... Ultra Sound
13564858 1 3185 1829 +1356 everstake 0x853b0078... BloXroute Max Profit
13567072 4 3248 1892 +1356 binance 0x855b00e6... BloXroute Max Profit
13566342 3 3226 1871 +1355 0x857b0038... Ultra Sound
13561241 4 3247 1892 +1355 0x8a850621... Ultra Sound
13562179 3 3225 1871 +1354 everstake 0x88a53ec4... BloXroute Max Profit
13567579 6 3287 1934 +1353 0x823e0146... BloXroute Max Profit
13563726 7 3308 1955 +1353 0x8a850621... Ultra Sound
13561757 4 3242 1892 +1350 everstake 0xb26f9666... Titan Relay
13561637 13 3432 2082 +1350 blockdaemon_lido 0xb26f9666... Titan Relay
13563642 1 3178 1829 +1349 0x8527d16c... Ultra Sound
13565871 7 3303 1955 +1348 everstake 0xb26f9666... Titan Relay
13564599 9 3343 1998 +1345 luno 0xb26f9666... Titan Relay
13567127 10 3364 2019 +1345 p2porg 0x850b00e0... BloXroute Max Profit
13565432 6 3278 1934 +1344 0xb67eaa5e... BloXroute Regulated
13564889 8 3315 1976 +1339 ether.fi 0x88a53ec4... BloXroute Regulated
13566976 5 3251 1913 +1338 ether.fi 0x82c466b9... EthGas
13561433 8 3313 1976 +1337 abyss_finance 0x88a53ec4... BloXroute Regulated
13564386 10 3353 2019 +1334 everstake 0x8527d16c... Ultra Sound
13562976 6 3267 1934 +1333 nethermind_lido 0xb26f9666... Titan Relay
13563432 4 3223 1892 +1331 0x850b00e0... BloXroute Regulated
13568348 5 3243 1913 +1330 0x856b0004... BloXroute Max Profit
13562767 6 3264 1934 +1330 everstake 0x88a53ec4... BloXroute Regulated
13561913 9 3326 1998 +1328 everstake 0xb26f9666... Titan Relay
13568353 9 3325 1998 +1327 everstake 0xb26f9666... Titan Relay
13561363 6 3261 1934 +1327 0x850b00e0... BloXroute Regulated
13562113 3 3197 1871 +1326 0x850b00e0... BloXroute Regulated
13561601 1 3152 1829 +1323 ether.fi 0x855b00e6... BloXroute Max Profit
13563708 0 3130 1807 +1323 0x851b00b1... Flashbots
13566176 0 3129 1807 +1322 binance 0x823e0146... Flashbots
13566106 0 3128 1807 +1321 0xb26f9666... Titan Relay
13561322 1 3148 1829 +1319 stakingfacilities_lido 0x823e0146... BloXroute Max Profit
13561951 9 3313 1998 +1315 everstake 0xb26f9666... Titan Relay
13563716 1 3144 1829 +1315 0x823e0146... Flashbots
13563722 5 3228 1913 +1315 0x8a850621... Ultra Sound
13563289 7 3269 1955 +1314 blockdaemon_lido 0xb26f9666... Titan Relay
13567792 3 3184 1871 +1313 0x8527d16c... Ultra Sound
13565085 12 3374 2061 +1313 blockdaemon 0x850b00e0... BloXroute Regulated
13565319 0 3120 1807 +1313 0x8527d16c... Ultra Sound
13561208 4 3204 1892 +1312 0x88a53ec4... BloXroute Max Profit
13563899 0 3117 1807 +1310 p2porg 0x91a8729e... BloXroute Regulated
13562032 2 3159 1850 +1309 p2porg 0x8527d16c... Ultra Sound
13564110 11 3348 2040 +1308 blockdaemon 0xb26f9666... Titan Relay
13562589 10 3326 2019 +1307 0xb26f9666... Titan Relay
13564128 14 3409 2103 +1306 stakingfacilities_lido 0xac23f8cc... Flashbots
13565383 0 3113 1807 +1306 gateway.fmas_lido 0x850b00e0... BloXroute Max Profit
13561995 8 3281 1976 +1305 0x853b0078... Ultra Sound
13566654 8 3281 1976 +1305 gateway.fmas_lido 0x856b0004... Ultra Sound
13564537 9 3302 1998 +1304 0xb26f9666... Titan Relay
13566716 5 3214 1913 +1301 0x853b0078... BloXroute Max Profit
13561496 13 3382 2082 +1300 0x8527d16c... Ultra Sound
13562169 0 3106 1807 +1299 ether.fi 0x852b0070... BloXroute Max Profit
13565176 0 3102 1807 +1295 0x91a8729e... BloXroute Max Profit
13562537 2 3144 1850 +1294 ether.fi 0x856b0004... BloXroute Max Profit
13564793 4 3185 1892 +1293 0xb26f9666... BloXroute Max Profit
13566514 0 3099 1807 +1292 everstake 0xb26f9666... Titan Relay
13568136 11 3331 2040 +1291 stakingfacilities_lido 0x853b0078... Aestus
13566659 4 3182 1892 +1290 gateway.fmas_lido 0x8527d16c... Ultra Sound
13561845 5 3202 1913 +1289 p2porg 0x853b0078... Ultra Sound
13566470 1 3117 1829 +1288 0x850b00e0... BloXroute Max Profit
Total anomalies: 209

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})