Tue, Feb 3, 2026

Propagation anomalies - 2026-02-03

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-03' AND slot_start_date_time < '2026-02-03'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,164
MEV blocks: 6,695 (93.5%)
Local blocks: 469 (6.5%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1848.9 + 15.74 × blob_count (R² = 0.013)
Residual σ = 657.7ms
Anomalies (>2σ slow): 185 (2.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13610233 0 10175 1849 +8326 solo_stakers Local Local
13605907 0 7123 1849 +5274 0xa412c4b8... Flashbots
13609404 0 7062 1849 +5213 abyss_finance Local Local
13607887 0 6739 1849 +4890 abyss_finance Local Local
13605296 0 6426 1849 +4577 dappnode Local Local
13611103 20 6734 2164 +4570 Local Local
13610450 9 6524 1991 +4533 Local Local
13610498 0 5941 1849 +4092 senseinode_lido Local Local
13605526 2 5333 1880 +3453 solo_stakers Local Local
13609391 0 4971 1849 +3122 solo_stakers Local Local
13608982 0 4720 1849 +2871 whale_0xba8f Local Local
13604832 0 4399 1849 +2550 upbit Local Local
13610182 0 4376 1849 +2527 binance Local Local
13609088 10 4327 2006 +2321 upbit Local Local
13610277 0 4024 1849 +2175 infstones_lido Local Local
13611474 0 3978 1849 +2129 whale_0x0ec2 Local Local
13606498 0 3928 1849 +2079 solo_stakers Local Local
13606209 6 3978 1943 +2035 ether.fi 0xb67eaa5e... BloXroute Max Profit
13609089 0 3835 1849 +1986 staked.us Local Local
13605280 1 3804 1865 +1939 blockdaemon_lido 0xb26f9666... Titan Relay
13607893 3 3792 1896 +1896 Local Local
13611480 3 3723 1896 +1827 revolut 0xb67eaa5e... Titan Relay
13609402 0 3648 1849 +1799 0x852b0070... Ultra Sound
13611344 5 3725 1928 +1797 Local Local
13607199 6 3713 1943 +1770 0x88857150... Ultra Sound
13605864 3 3633 1896 +1737 0xb67eaa5e... BloXroute Regulated
13605249 4 3648 1912 +1736 blockdaemon 0xb26f9666... Titan Relay
13608445 2 3591 1880 +1711 0x860d4173... BloXroute Max Profit
13611522 0 3559 1849 +1710 0x91a8729e... BloXroute Regulated
13605524 13 3763 2053 +1710 bitstamp 0xb67eaa5e... BloXroute Regulated
13604825 3 3585 1896 +1689 0x8527d16c... Ultra Sound
13604928 0 3532 1849 +1683 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13610596 15 3764 2085 +1679 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13607201 9 3653 1991 +1662 whale_0xc541 0xb67eaa5e... BloXroute Max Profit
13604714 12 3679 2038 +1641 0x8527d16c... Ultra Sound
13605013 4 3543 1912 +1631 solo_stakers Local Local
13608934 8 3596 1975 +1621 figment 0x855b00e6... Ultra Sound
13606193 6 3543 1943 +1600 ether.fi 0xb26f9666... Titan Relay
13606966 1 3458 1865 +1593 revolut 0x88a53ec4... BloXroute Regulated
13604953 7 3551 1959 +1592 revolut 0x8527d16c... Ultra Sound
13609554 0 3425 1849 +1576 everstake 0xb67eaa5e... BloXroute Max Profit
13606436 0 3422 1849 +1573 blockdaemon 0x8a850621... Ultra Sound
13607595 1 3436 1865 +1571 blockdaemon_lido 0xb67eaa5e... Titan Relay
13607203 3 3467 1896 +1571 everstake 0x853b0078... BloXroute Max Profit
13606976 1 3427 1865 +1562 stakingfacilities_lido 0x8527d16c... Ultra Sound
13606004 14 3631 2069 +1562 everstake 0xb26f9666... Titan Relay
13610523 12 3599 2038 +1561 blockdaemon 0xb26f9666... Titan Relay
13609981 0 3403 1849 +1554 p2porg 0xb67eaa5e... BloXroute Max Profit
13606112 0 3403 1849 +1554 binance 0x8a850621... BloXroute Max Profit
13610620 0 3401 1849 +1552 kraken 0xb26f9666... EthGas
13607648 8 3525 1975 +1550 0xb26f9666... Titan Relay
13610049 1 3408 1865 +1543 blockdaemon_lido 0xb67eaa5e... Titan Relay
13605767 9 3532 1991 +1541 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13609481 13 3587 2053 +1534 blockdaemon_lido 0xb67eaa5e... Titan Relay
13611475 0 3377 1849 +1528 everstake 0x8a2a4361... BloXroute Max Profit
13607968 1 3390 1865 +1525 stakingfacilities_lido 0x8527d16c... Ultra Sound
13605510 8 3498 1975 +1523 blockdaemon_lido 0x855b00e6... Ultra Sound
13606470 1 3379 1865 +1514 blockdaemon 0xb67eaa5e... BloXroute Regulated
13606599 9 3502 1991 +1511 0x88a53ec4... BloXroute Max Profit
13609115 1 3375 1865 +1510 blockdaemon_lido 0x88857150... Ultra Sound
13608865 5 3435 1928 +1507 blockdaemon 0x8a850621... Titan Relay
13606303 1 3372 1865 +1507 0xb67eaa5e... BloXroute Regulated
13605658 1 3366 1865 +1501 0xb26f9666... Titan Relay
13605571 3 3395 1896 +1499 blockdaemon_lido 0xb26f9666... Titan Relay
13610501 0 3347 1849 +1498 everstake 0x88a53ec4... BloXroute Max Profit
13606358 0 3343 1849 +1494 everstake 0xb67eaa5e... BloXroute Max Profit
13610110 0 3341 1849 +1492 everstake 0xb67eaa5e... BloXroute Max Profit
13605244 15 3577 2085 +1492 liquid_collective Local Local
13604788 2 3371 1880 +1491 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13607425 6 3433 1943 +1490 everstake 0xb26f9666... Titan Relay
13610688 1 3354 1865 +1489 stakingfacilities_lido 0x823e0146... Flashbots
13608134 5 3416 1928 +1488 blockdaemon_lido 0xb67eaa5e... Titan Relay
13609014 0 3336 1849 +1487 everstake 0x88a53ec4... BloXroute Max Profit
13607838 0 3333 1849 +1484 blockdaemon_lido 0x88857150... Ultra Sound
13604818 5 3405 1928 +1477 everstake 0x88a53ec4... BloXroute Regulated
13608281 7 3428 1959 +1469 0x88857150... Ultra Sound
13607696 5 3393 1928 +1465 everstake 0xb67eaa5e... BloXroute Regulated
13605149 0 3311 1849 +1462 0xb4ce6162... Ultra Sound
13608542 0 3310 1849 +1461 blockdaemon_lido 0x860d4173... BloXroute Regulated
13610213 7 3420 1959 +1461 blockdaemon 0x82c466b9... BloXroute Regulated
13605342 2 3341 1880 +1461 blockdaemon 0x850b00e0... BloXroute Regulated
13608340 6 3396 1943 +1453 whale_0x7791 0x8527d16c... Ultra Sound
13605377 2 3332 1880 +1452 blockdaemon_lido 0xb26f9666... Titan Relay
13607706 5 3377 1928 +1449 everstake 0x8527d16c... Ultra Sound
13611532 0 3298 1849 +1449 figment 0xb26f9666... BloXroute Max Profit
13610625 1 3312 1865 +1447 everstake 0xb26f9666... Titan Relay
13605807 8 3422 1975 +1447 0xb26f9666... BloXroute Max Profit
13608250 8 3421 1975 +1446 blockdaemon_lido 0x850b00e0... Ultra Sound
13608491 13 3496 2053 +1443 ether.fi 0x88a53ec4... BloXroute Max Profit
13609032 0 3291 1849 +1442 everstake 0xb26f9666... Titan Relay
13610184 3 3330 1896 +1434 blockdaemon 0xb26f9666... Ultra Sound
13606263 4 3344 1912 +1432 everstake 0xb67eaa5e... BloXroute Max Profit
13606079 2 3309 1880 +1429 0x853b0078... Ultra Sound
13607971 8 3403 1975 +1428 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13608392 0 3277 1849 +1428 luno 0x852b0070... Ultra Sound
13611460 0 3276 1849 +1427 luno 0xb26f9666... Titan Relay
13606178 6 3368 1943 +1425 blockdaemon 0x8a850621... Ultra Sound
13610520 8 3398 1975 +1423 0x8db2a99d... BloXroute Max Profit
13610655 8 3397 1975 +1422 everstake 0xb67eaa5e... BloXroute Regulated
13607552 3 3318 1896 +1422 Local Local
13610724 0 3268 1849 +1419 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13605681 6 3362 1943 +1419 blockdaemon 0xb26f9666... Titan Relay
13608146 5 3345 1928 +1417 blockdaemon 0x850b00e0... BloXroute Regulated
13605949 7 3375 1959 +1416 blockdaemon 0x860d4173... BloXroute Regulated
13608092 5 3343 1928 +1415 revolut 0x850b00e0... BloXroute Regulated
13608088 8 3388 1975 +1413 stakefish 0x856b0004... BloXroute Max Profit
13608511 4 3325 1912 +1413 everstake 0x853b0078... Ultra Sound
13604752 8 3387 1975 +1412 blockdaemon 0xb26f9666... Titan Relay
13608709 3 3307 1896 +1411 blockdaemon_lido 0x88510a78... BloXroute Regulated
13611322 17 3527 2116 +1411 0x850b00e0... BloXroute Regulated
13604782 1 3274 1865 +1409 blockdaemon 0x853b0078... Ultra Sound
13607611 5 3335 1928 +1407 blockdaemon 0x82c466b9... BloXroute Regulated
13611414 8 3379 1975 +1404 p2porg 0x850b00e0... BloXroute Max Profit
13605671 0 3253 1849 +1404 blockdaemon 0x91a8729e... Ultra Sound
13607131 3 3299 1896 +1403 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13604798 11 3424 2022 +1402 0xb67eaa5e... BloXroute Max Profit
13610272 11 3421 2022 +1399 stakingfacilities_lido 0x8527d16c... Ultra Sound
13608690 2 3278 1880 +1398 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13607040 0 3241 1849 +1392 solo_stakers 0xa0366397... Flashbots
13610739 1 3256 1865 +1391 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13606380 8 3365 1975 +1390 everstake 0xb26f9666... Titan Relay
13604786 8 3365 1975 +1390 mantle 0xb26f9666... BloXroute Max Profit
13604730 2 3270 1880 +1390 blockdaemon 0x853b0078... Ultra Sound
13608980 0 3238 1849 +1389 blockdaemon 0x99dbe3e8... Ultra Sound
13605857 14 3457 2069 +1388 0xb26f9666... BloXroute Max Profit
13605378 6 3329 1943 +1386 0xb26f9666... Titan Relay
13610457 2 3265 1880 +1385 figment 0x850b00e0... Flashbots
13609733 5 3309 1928 +1381 everstake 0x88a53ec4... BloXroute Max Profit
13610995 10 3386 2006 +1380 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13605825 1 3244 1865 +1379 0xb26f9666... Titan Relay
13610091 15 3463 2085 +1378 0x82c466b9... BloXroute Regulated
13604715 7 3336 1959 +1377 blockdaemon 0x8527d16c... Ultra Sound
13607829 3 3273 1896 +1377 0x8a850621... Ultra Sound
13609516 3 3271 1896 +1375 blockdaemon 0x88a53ec4... BloXroute Regulated
13610519 1 3239 1865 +1374 0xb26f9666... Ultra Sound
13610220 0 3222 1849 +1373 luno 0x852b0070... Ultra Sound
13610576 16 3472 2101 +1371 0x8a850621... Ultra Sound
13609340 8 3344 1975 +1369 blockdaemon 0x88510a78... BloXroute Regulated
13608339 5 3296 1928 +1368 0xb26f9666... Titan Relay
13609697 0 3217 1849 +1368 0x851b00b1... BloXroute Max Profit
13607450 5 3295 1928 +1367 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13604860 5 3292 1928 +1364 stakingfacilities_lido 0xb67eaa5e... BloXroute Regulated
13606853 6 3305 1943 +1362 everstake 0x88a53ec4... BloXroute Regulated
13610578 7 3320 1959 +1361 everstake 0xb26f9666... Titan Relay
13609801 0 3208 1849 +1359 0xb26f9666... Titan Relay
13609638 3 3255 1896 +1359 0x88857150... Ultra Sound
13606309 6 3299 1943 +1356 everstake 0xb67eaa5e... BloXroute Regulated
13611445 9 3346 1991 +1355 everstake 0xb67eaa5e... BloXroute Max Profit
13608195 3 3251 1896 +1355 0x88a53ec4... BloXroute Max Profit
13605828 13 3406 2053 +1353 0x88a53ec4... BloXroute Max Profit
13606797 7 3311 1959 +1352 blockdaemon_lido 0x8527d16c... Ultra Sound
13606286 8 3323 1975 +1348 everstake 0x8527d16c... Ultra Sound
13608114 0 3195 1849 +1346 everstake 0xb26f9666... Titan Relay
13608899 0 3194 1849 +1345 0xb7c5beef... Titan Relay
13608955 3 3241 1896 +1345 everstake 0xb26f9666... Titan Relay
13610837 1 3209 1865 +1344 0xb26f9666... BloXroute Max Profit
13611463 9 3334 1991 +1343 0x853b0078... BloXroute Max Profit
13607298 1 3208 1865 +1343 0xb26f9666... Titan Relay
13611453 14 3412 2069 +1343 0xb67eaa5e... BloXroute Regulated
13609718 0 3191 1849 +1342 everstake 0xb67eaa5e... BloXroute Regulated
13609053 14 3411 2069 +1342 blockdaemon 0x856b0004... Ultra Sound
13605005 5 3268 1928 +1340 whale_0xad1d 0xb67eaa5e... BloXroute Regulated
13611237 12 3378 2038 +1340 0x88510a78... BloXroute Regulated
13609747 14 3409 2069 +1340 p2porg 0x850b00e0... BloXroute Regulated
13608190 10 3346 2006 +1340 blockdaemon 0xb26f9666... Titan Relay
13607772 0 3188 1849 +1339 blockdaemon_lido 0xb26f9666... Titan Relay
13604712 19 3487 2148 +1339 0x850b00e0... BloXroute Regulated
13606681 7 3298 1959 +1339 ether.fi 0x850b00e0... BloXroute Max Profit
13605058 3 3232 1896 +1336 p2porg 0x8527d16c... Ultra Sound
13605898 9 3325 1991 +1334 staked.us Local Local
13609271 3 3230 1896 +1334 everstake 0x88a53ec4... BloXroute Regulated
13609452 8 3308 1975 +1333 blockdaemon 0x8527d16c... Ultra Sound
13609165 0 3182 1849 +1333 0xb26f9666... Titan Relay
13610116 0 3181 1849 +1332 0xb67eaa5e... BloXroute Max Profit
13604406 3 3226 1896 +1330 everstake 0xb67eaa5e... BloXroute Max Profit
13609820 0 3177 1849 +1328 0x88857150... Ultra Sound
13607654 8 3300 1975 +1325 blockdaemon_lido 0xb26f9666... Titan Relay
13606041 2 3205 1880 +1325 everstake 0xb26f9666... Titan Relay
13609144 2 3204 1880 +1324 p2porg 0x88a53ec4... BloXroute Max Profit
13609433 0 3171 1849 +1322 luno 0x8527d16c... Ultra Sound
13608412 14 3391 2069 +1322 blockdaemon_lido 0xb67eaa5e... Titan Relay
13609221 6 3265 1943 +1322 p2porg 0x850b00e0... BloXroute Regulated
13607256 0 3167 1849 +1318 0x852b0070... BloXroute Max Profit
13611495 10 3324 2006 +1318 0xb67eaa5e... BloXroute Regulated
13609592 2 3196 1880 +1316 p2porg 0x88a53ec4... BloXroute Max Profit
Total anomalies: 185

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})