Thu, Feb 5, 2026

Propagation anomalies - 2026-02-05

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-05' AND slot_start_date_time < '2026-02-05'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,179
MEV blocks: 6,744 (93.9%)
Local blocks: 435 (6.1%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1899.0 + 8.50 × blob_count (R² = 0.007)
Residual σ = 669.6ms
Anomalies (>2σ slow): 201 (2.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13621136 0 7746 1899 +5847 Local Local
13621660 0 6886 1899 +4987 piertwo Local Local
13622081 0 6797 1899 +4898 Local Local
13625278 0 6724 1899 +4825 Local Local
13625839 0 6572 1899 +4673 Local Local
13622732 0 6218 1899 +4319 gateway.fmas_lido Local Local
13621015 0 5940 1899 +4041 solo_stakers Local Local
13619173 0 5863 1899 +3964 solo_stakers Local Local
13622816 0 5751 1899 +3852 Local Local
13623804 0 5568 1899 +3669 whale_0xba8f Local Local
13625076 0 5282 1899 +3383 launchnodes_lido Local Local
13619200 6 4731 1950 +2781 upbit Local Local
13620388 0 4276 1899 +2377 stakefish_lido Local Local
13622699 0 4206 1899 +2307 ether.fi Local Local
13621333 0 4163 1899 +2264 Local Local
13619966 0 3982 1899 +2083 everstake Local Local
13623252 0 3954 1899 +2055 ether.fi Local Local
13624398 0 3947 1899 +2048 solo_stakers Local Local
13625121 20 4090 2069 +2021 kraken 0xb26f9666... Titan Relay
13618838 0 3838 1899 +1939 Local Local
13625124 0 3838 1899 +1939 Local Local
13620436 0 3828 1899 +1929 abyss_finance Local Local
13623836 3 3830 1925 +1905 blockdaemon_lido 0xb26f9666... Titan Relay
13620093 1 3756 1908 +1848 ether.fi 0x88a53ec4... BloXroute Regulated
13621040 0 3745 1899 +1846 Local Local
13625986 0 3731 1899 +1832 blockdaemon Local Local
13623414 0 3713 1899 +1814 0xb26f9666... EthGas
13620640 1 3710 1908 +1802 blockdaemon_lido 0x8527d16c... Ultra Sound
13625003 0 3687 1899 +1788 Local Local
13619093 5 3724 1942 +1782 0x856b0004... Ultra Sound
13621076 3 3688 1925 +1763 0x8527d16c... Ultra Sound
13625631 4 3682 1933 +1749 ether.fi 0x853b0078... Agnostic Gnosis
13623806 0 3644 1899 +1745 bitstamp 0x852b0070... Ultra Sound
13620914 1 3651 1908 +1743 ether.fi 0xb67eaa5e... BloXroute Regulated
13619471 5 3641 1942 +1699 0x88a53ec4... BloXroute Regulated
13621198 0 3594 1899 +1695 ether.fi 0xb67eaa5e... BloXroute Regulated
13622015 4 3617 1933 +1684 0x8527d16c... Ultra Sound
13623857 9 3656 1976 +1680 0xb26f9666... Titan Relay
13618814 8 3645 1967 +1678 0xb26f9666... Titan Relay
13621218 0 3573 1899 +1674 lido 0xb211df49... Aestus
13625057 0 3571 1899 +1672 0x8527d16c... Ultra Sound
13625154 8 3637 1967 +1670 0xb26f9666... Titan Relay
13622523 21 3726 2078 +1648 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13623649 0 3543 1899 +1644 0x8527d16c... Ultra Sound
13620916 19 3698 2061 +1637 0x853b0078... Ultra Sound
13625439 12 3637 2001 +1636 revolut 0x8527d16c... Ultra Sound
13620931 0 3531 1899 +1632 binance Local Local
13625049 21 3705 2078 +1627 blockdaemon_lido 0x850b00e0... Ultra Sound
13621543 0 3525 1899 +1626 revolut 0x88857150... Ultra Sound
13625358 6 3562 1950 +1612 figment 0xb26f9666... Ultra Sound
13620521 0 3509 1899 +1610 0xb26f9666... Titan Relay
13625878 16 3641 2035 +1606 ether.fi 0x853b0078... Ultra Sound
13625667 4 3537 1933 +1604 lido 0xb67eaa5e... Titan Relay
13622488 0 3503 1899 +1604 0x8527d16c... Ultra Sound
13622792 0 3502 1899 +1603 blockdaemon_lido 0x88857150... Ultra Sound
13619873 13 3611 2010 +1601 blockdaemon 0x88857150... Ultra Sound
13625240 6 3548 1950 +1598 blockdaemon_lido 0x88857150... Ultra Sound
13623977 1 3502 1908 +1594 blockdaemon_lido 0xb67eaa5e... Titan Relay
13621878 3 3515 1925 +1590 blockdaemon_lido 0xb67eaa5e... Titan Relay
13624999 0 3488 1899 +1589 ether.fi 0x8527d16c... Ultra Sound
13625075 1 3496 1908 +1588 whale_0xdd6c 0xb26f9666... Titan Relay
13620941 0 3483 1899 +1584 revolut 0x8527d16c... Ultra Sound
13620475 0 3479 1899 +1580 blockdaemon 0x8a850621... Ultra Sound
13619448 5 3520 1942 +1578 lido 0xb67eaa5e... Titan Relay
13624482 0 3476 1899 +1577 blockdaemon_lido 0xa1da2978... Ultra Sound
13624775 10 3559 1984 +1575 coinbase Local Local
13623669 20 3640 2069 +1571 0x8527d16c... Ultra Sound
13623186 21 3647 2078 +1569 ether.fi 0xb67eaa5e... EthGas
13619072 3 3494 1925 +1569 stakefish 0x8527d16c... Ultra Sound
13622487 0 3458 1899 +1559 0x8527d16c... Ultra Sound
13621600 14 3570 2018 +1552 0x88a53ec4... BloXroute Regulated
13619456 0 3446 1899 +1547 blockdaemon_lido Local Local
13622840 10 3530 1984 +1546 0x853b0078... Agnostic Gnosis
13623215 0 3441 1899 +1542 everstake 0xb26f9666... Aestus
13625106 1 3449 1908 +1541 everstake 0xb26f9666... Titan Relay
13625050 21 3612 2078 +1534 kraken 0x88a53ec4... BloXroute Max Profit
13622686 21 3606 2078 +1528 p2porg 0x850b00e0... BloXroute Regulated
13624222 21 3599 2078 +1521 p2porg 0x850b00e0... BloXroute Regulated
13621306 5 3454 1942 +1512 Local Local
13623214 1 3414 1908 +1506 ether.fi 0xb26f9666... Titan Relay
13624134 0 3405 1899 +1506 blockdaemon 0x852b0070... Ultra Sound
13623003 10 3489 1984 +1505 ether.fi 0x8527d16c... Ultra Sound
13623287 21 3582 2078 +1504 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13621477 8 3468 1967 +1501 ether.fi 0x856b0004... BloXroute Max Profit
13619293 5 3441 1942 +1499 blockdaemon_lido 0xb67eaa5e... Titan Relay
13625090 1 3403 1908 +1495 luno 0x8527d16c... Ultra Sound
13623744 9 3469 1976 +1493 nethermind_lido 0x853b0078... Ultra Sound
13625806 19 3551 2061 +1490 0x850b00e0... BloXroute Regulated
13621338 6 3439 1950 +1489 luno 0x850b00e0... BloXroute Regulated
13623898 0 3383 1899 +1484 ether.fi 0x8db2a99d... Flashbots
13625497 21 3561 2078 +1483 ether.fi 0x853b0078... Ultra Sound
13619761 13 3489 2010 +1479 0x88a53ec4... BloXroute Max Profit
13625009 19 3538 2061 +1477 figment 0x855b00e6... BloXroute Max Profit
13622848 14 3490 2018 +1472 ether.fi 0xb26f9666... EthGas
13621883 8 3434 1967 +1467 0x850b00e0... BloXroute Max Profit
13625396 8 3432 1967 +1465 0x850b00e0... BloXroute Regulated
13624784 0 3364 1899 +1465 p2porg 0x852b0070... Ultra Sound
13625612 1 3371 1908 +1463 0x8a850621... Ultra Sound
13621409 5 3403 1942 +1461 blockdaemon 0x850b00e0... Ultra Sound
13621024 3 3386 1925 +1461 stakingfacilities_lido 0xb67eaa5e... BloXroute Max Profit
13621760 6 3410 1950 +1460 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13622016 3 3380 1925 +1455 stakingfacilities_lido 0x8527d16c... Ultra Sound
13622133 7 3411 1959 +1452 blockdaemon_lido 0x855b00e6... Ultra Sound
13619181 4 3385 1933 +1452 everstake 0xb67eaa5e... BloXroute Max Profit
13621249 5 3392 1942 +1450 0xb4ce6162... Ultra Sound
13619414 0 3344 1899 +1445 everstake 0x856b0004... Agnostic Gnosis
13621259 0 3342 1899 +1443 everstake 0xb26f9666... Titan Relay
13623041 21 3520 2078 +1442 solo_stakers 0xb4ce6162... Ultra Sound
13622314 2 3356 1916 +1440 everstake 0xb26f9666... Aestus
13625096 0 3338 1899 +1439 0x8527d16c... Ultra Sound
13624947 21 3516 2078 +1438 kraken 0xb26f9666... EthGas
13622168 0 3337 1899 +1438 blockdaemon 0xb26f9666... Titan Relay
13624373 0 3335 1899 +1436 0xb67eaa5e... BloXroute Max Profit
13624831 10 3417 1984 +1433 stakefish 0x82c466b9... BloXroute Regulated
13620832 0 3331 1899 +1432 0xb4ce6162... Ultra Sound
13621191 0 3330 1899 +1431 everstake 0xb67eaa5e... BloXroute Max Profit
13619100 5 3370 1942 +1428 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13619565 5 3369 1942 +1427 blockdaemon 0xb26f9666... Titan Relay
13623680 0 3325 1899 +1426 bitstamp 0x8527d16c... Ultra Sound
13624708 11 3416 1993 +1423 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13621250 3 3348 1925 +1423 blockdaemon 0xb26f9666... Titan Relay
13623880 0 3321 1899 +1422 0xb26f9666... Titan Relay
13619373 1 3328 1908 +1420 blockdaemon 0x88510a78... BloXroute Regulated
13625705 0 3319 1899 +1420 blockdaemon 0xb26f9666... Titan Relay
13620488 0 3318 1899 +1419 0x88a53ec4... BloXroute Max Profit
13624078 20 3487 2069 +1418 0x850b00e0... BloXroute Regulated
13623628 16 3453 2035 +1418 Local Local
13624888 0 3316 1899 +1417 p2porg 0xad251e6b... Flashbots
13625779 0 3316 1899 +1417 0x852b0070... Ultra Sound
13619316 11 3409 1993 +1416 blockdaemon 0x853b0078... Ultra Sound
13621643 8 3383 1967 +1416 whale_0xdd6c 0x8527d16c... Ultra Sound
13620964 6 3365 1950 +1415 everstake 0x88a53ec4... BloXroute Regulated
13621147 11 3407 1993 +1414 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13624130 9 3390 1976 +1414 0xb4ce6162... Ultra Sound
13623159 8 3380 1967 +1413 p2porg 0x8527d16c... Ultra Sound
13619050 4 3346 1933 +1413 blockdaemon 0x853b0078... BloXroute Regulated
13619225 0 3312 1899 +1413 luno 0xb26f9666... Titan Relay
13623557 21 3489 2078 +1411 0x850b00e0... BloXroute Regulated
13621604 6 3361 1950 +1411 0x853b0078... Aestus
13620579 16 3445 2035 +1410 everstake 0x850b00e0... BloXroute Max Profit
13620721 6 3358 1950 +1408 blockdaemon_lido 0x855b00e6... Ultra Sound
13623288 0 3306 1899 +1407 everstake 0xb26f9666... Aestus
13625394 5 3348 1942 +1406 0x850b00e0... BloXroute Max Profit
13621343 3 3330 1925 +1405 stakefish 0x853b0078... BloXroute Regulated
13623259 20 3474 2069 +1405 everstake 0xb67eaa5e... BloXroute Regulated
13620092 0 3304 1899 +1405 kiln 0x852b0070... Aestus
13619561 9 3380 1976 +1404 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13620454 21 3481 2078 +1403 blockdaemon_lido 0x853b0078... Ultra Sound
13620418 21 3479 2078 +1401 ether.fi 0x850b00e0... BloXroute Max Profit
13624570 4 3334 1933 +1401 0x853b0078... Titan Relay
13622844 13 3410 2010 +1400 blockdaemon 0x860d4173... BloXroute Regulated
13620021 0 3297 1899 +1398 p2porg 0x853b0078... Ultra Sound
13619947 10 3380 1984 +1396 ether.fi 0x8a850621... EthGas
13624389 7 3353 1959 +1394 kraken 0xb26f9666... EthGas
13622659 3 3318 1925 +1393 0x88a53ec4... BloXroute Max Profit
13623232 10 3371 1984 +1387 0x88857150... Ultra Sound
13624688 16 3416 2035 +1381 everstake 0xb26f9666... Titan Relay
13623433 17 3424 2044 +1380 everstake 0x88a53ec4... BloXroute Max Profit
13620289 0 3277 1899 +1378 p2porg 0x852b0070... Ultra Sound
13623934 15 3404 2027 +1377 p2porg 0x853b0078... Titan Relay
13620546 6 3326 1950 +1376 everstake 0x856b0004... Agnostic Gnosis
13623712 1 3281 1908 +1373 bridgetower_lido 0xb67eaa5e... Ultra Sound
13625588 12 3374 2001 +1373 0xb26f9666... BloXroute Max Profit
13619384 9 3348 1976 +1372 everstake 0x855b00e6... BloXroute Max Profit
13623327 0 3271 1899 +1372 0xb67eaa5e... BloXroute Regulated
13625272 1 3277 1908 +1369 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13622007 4 3302 1933 +1369 everstake 0xb26f9666... Titan Relay
13620780 8 3335 1967 +1368 blockdaemon_lido 0xb26f9666... Titan Relay
13625017 0 3267 1899 +1368 everstake 0x851b00b1... BloXroute Max Profit
13622679 0 3267 1899 +1368 blockdaemon_lido 0xb26f9666... Titan Relay
13619637 13 3377 2010 +1367 0x88a53ec4... BloXroute Max Profit
13619328 0 3266 1899 +1367 p2porg 0x853b0078... Aestus
13620685 9 3342 1976 +1366 0xb26f9666... Titan Relay
13623758 8 3333 1967 +1366 revolut 0x8527d16c... Ultra Sound
13623700 9 3341 1976 +1365 blockdaemon_lido 0xb26f9666... Titan Relay
13620988 7 3323 1959 +1364 0xb26f9666... Titan Relay
13621102 2 3278 1916 +1362 p2porg 0x850b00e0... BloXroute Regulated
13619859 2 3278 1916 +1362 everstake 0x855b00e6... BloXroute Max Profit
13625949 12 3362 2001 +1361 0xb67eaa5e... BloXroute Regulated
13619369 10 3344 1984 +1360 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13624374 0 3259 1899 +1360 p2porg 0xb26f9666... BloXroute Max Profit
13619809 19 3420 2061 +1359 0xb67eaa5e... BloXroute Regulated
13624372 19 3419 2061 +1358 blockdaemon 0x853b0078... Titan Relay
13624322 0 3256 1899 +1357 blockdaemon 0xb26f9666... Titan Relay
13623015 0 3256 1899 +1357 0x850b00e0... Flashbots
13620186 11 3349 1993 +1356 stakingfacilities_lido 0x856b0004... Aestus
13624107 9 3330 1976 +1354 blockdaemon_lido 0x856b0004... Ultra Sound
13620739 10 3338 1984 +1354 0xb26f9666... BloXroute Regulated
13623218 5 3293 1942 +1351 blockdaemon_lido 0xb26f9666... Titan Relay
13625657 3 3275 1925 +1350 0x8527d16c... Ultra Sound
13621913 2 3266 1916 +1350 blockdaemon 0x8527d16c... Ultra Sound
13619815 11 3342 1993 +1349 everstake 0x856b0004... Ultra Sound
13624756 21 3426 2078 +1348 0xb7c5e609... BloXroute Max Profit
13619338 11 3341 1993 +1348 blockdaemon 0xb26f9666... Titan Relay
13619799 0 3247 1899 +1348 everstake 0x8a2a4361... Titan Relay
13620924 3 3269 1925 +1344 blockdaemon_lido 0xb26f9666... Titan Relay
13623330 0 3242 1899 +1343 0xb4ce6162... Ultra Sound
13620268 5 3284 1942 +1342 blockdaemon 0xb26f9666... Titan Relay
13622030 8 3307 1967 +1340 blockdaemon_lido 0xb26f9666... Titan Relay
13622641 0 3239 1899 +1340 0x823e0146... Flashbots
13625951 1 3247 1908 +1339 blockdaemon_lido 0xb26f9666... Titan Relay
Total anomalies: 201

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})