Sun, Dec 14, 2025

Propagation anomalies - 2025-12-14

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,173
MEV blocks: 6,611 (92.2%)
Local blocks: 562 (7.8%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1636.1 + 24.98 × blob_count (R² = 0.017)
Residual σ = 591.8ms
Anomalies (>2σ slow): 256 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13244112 0 6758 1636 +5122 whale_0x3212 Local Local
13243015 0 4144 1636 +2508 bitstamp Local Local
13241653 0 4043 1636 +2407 ether.fi Local Local
13241507 0 3957 1636 +2321 dappnode Local Local
13243136 0 3763 1636 +2127 upbit 0xba003e46... BloXroute Max Profit
13239808 0 3719 1636 +2083 ether.fi Local Local
13241075 3 3775 1711 +2064 ether.fi 0x856b0004... Agnostic Gnosis
13238560 7 3800 1811 +1989 blockdaemon 0x850b00e0... BloXroute Regulated
13238816 0 3614 1636 +1978 upbit Local Local
13238015 1 3606 1661 +1945 blockdaemon_lido 0x853b0078... Ultra Sound
13241254 3 3586 1711 +1875 revolut 0xb67eaa5e... Titan Relay
13243781 0 3478 1636 +1842 blockdaemon 0xb67eaa5e... BloXroute Regulated
13237359 7 3608 1811 +1797 lido Local Local
13237774 7 3596 1811 +1785 blockdaemon 0x8527d16c... Ultra Sound
13241702 10 3658 1886 +1772 revolut 0xb67eaa5e... Titan Relay
13237481 9 3626 1861 +1765 figment 0x850b00e0... BloXroute Regulated
13244191 0 3399 1636 +1763 everstake 0xb26f9666... Titan Relay
13241545 4 3493 1736 +1757 blockdaemon 0x8527d16c... Ultra Sound
13240296 6 3538 1786 +1752 blockdaemon 0x91b123d8... BloXroute Regulated
13243717 6 3526 1786 +1740 whale_0xa8cb 0xb26f9666... BloXroute Max Profit
13242982 3 3449 1711 +1738 blockdaemon 0x8527d16c... Ultra Sound
13242848 3 3435 1711 +1724 0x853b0078... Ultra Sound
13241260 6 3485 1786 +1699 figment 0x8527d16c... Ultra Sound
13243518 0 3323 1636 +1687 0x8527d16c... Ultra Sound
13243001 4 3420 1736 +1684 bitstamp 0x853b0078... Titan Relay
13239883 9 3530 1861 +1669 0x8527d16c... Ultra Sound
13242694 5 3425 1761 +1664 0x823e0146... Ultra Sound
13238716 6 3449 1786 +1663 0x853b0078... Ultra Sound
13240247 3 3373 1711 +1662 0x8527d16c... Ultra Sound
13238832 3 3346 1711 +1635 blockdaemon 0x850b00e0... BloXroute Regulated
13238003 6 3392 1786 +1606 blockdaemon 0x850b00e0... BloXroute Regulated
13238670 0 3241 1636 +1605 blockdaemon 0x8a850621... Ultra Sound
13243406 6 3388 1786 +1602 figment 0x856b0004... Ultra Sound
13241984 9 3445 1861 +1584 revolut 0xb7c5e609... BloXroute Regulated
13237807 6 3370 1786 +1584 revolut 0x8527d16c... Ultra Sound
13238530 2 3262 1686 +1576 blockdaemon 0x82c466b9... BloXroute Regulated
13240294 3 3286 1711 +1575 blockdaemon 0x88a53ec4... BloXroute Regulated
13237368 4 3309 1736 +1573 0xb67eaa5e... BloXroute Regulated
13240156 3 3282 1711 +1571 blockdaemon_lido 0x850b00e0... Ultra Sound
13237259 3 3272 1711 +1561 blockdaemon 0x850b00e0... BloXroute Regulated
13240718 0 3193 1636 +1557 blockdaemon_lido 0x99dbe3e8... Ultra Sound
13237945 6 3340 1786 +1554 blockdaemon 0xb67eaa5e... BloXroute Regulated
13239368 4 3288 1736 +1552 blockdaemon 0x8a850621... Ultra Sound
13239360 6 3335 1786 +1549 p2porg 0xb26f9666... BloXroute Regulated
13238531 3 3252 1711 +1541 luno 0xb67eaa5e... BloXroute Regulated
13238494 3 3248 1711 +1537 blockdaemon 0x8a850621... Ultra Sound
13239486 3 3246 1711 +1535 blockdaemon 0x88510a78... BloXroute Regulated
13243049 0 3170 1636 +1534 staked.us 0x851b00b1... Flashbots
13243388 3 3241 1711 +1530 blockdaemon_lido 0x850b00e0... Ultra Sound
13243950 6 3308 1786 +1522 0xb26f9666... Titan Relay
13239427 3 3226 1711 +1515 blockdaemon 0x8527d16c... Ultra Sound
13240355 4 3247 1736 +1511 0x850b00e0... BloXroute Regulated
13244075 5 3266 1761 +1505 blockdaemon 0x8a850621... Titan Relay
13244210 4 3241 1736 +1505 blockdaemon 0x850b00e0... BloXroute Regulated
13238183 4 3240 1736 +1504 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13241067 3 3212 1711 +1501 blockdaemon 0xb67eaa5e... BloXroute Regulated
13240269 13 3460 1961 +1499 0x8527d16c... Ultra Sound
13243306 3 3210 1711 +1499 blockdaemon 0xb26f9666... Titan Relay
13242392 0 3134 1636 +1498 blockdaemon 0xb211df49... Ultra Sound
13240992 6 3267 1786 +1481 0x856b0004... Ultra Sound
13239235 3 3189 1711 +1478 revolut 0x88857150... Ultra Sound
13243398 5 3237 1761 +1476 blockdaemon 0x850b00e0... BloXroute Regulated
13243511 9 3328 1861 +1467 luno 0xb26f9666... Titan Relay
13243934 3 3175 1711 +1464 blockdaemon 0x853b0078... Ultra Sound
13240256 3 3173 1711 +1462 p2porg 0x823e0146... BloXroute Max Profit
13239790 5 3219 1761 +1458 0x850b00e0... Flashbots
13237874 6 3237 1786 +1451 luno 0xb67eaa5e... BloXroute Regulated
13242899 4 3184 1736 +1448 luno 0x8527d16c... Ultra Sound
13238338 3 3157 1711 +1446 0x853b0078... Ultra Sound
13237427 3 3153 1711 +1442 0x850b00e0... Flashbots
13242150 6 3224 1786 +1438 blockdaemon 0xb67eaa5e... BloXroute Regulated
13237497 7 3247 1811 +1436 revolut 0xb26f9666... Titan Relay
13241275 0 3072 1636 +1436 0x851b00b1... BloXroute Max Profit
13244141 1 3094 1661 +1433 everstake 0xb26f9666... Aestus
13240708 0 3067 1636 +1431 solo_stakers 0x851b00b1... BloXroute Max Profit
13239483 7 3241 1811 +1430 blockdaemon_lido 0x850b00e0... Ultra Sound
13240473 10 3309 1886 +1423 blockdaemon 0xb67eaa5e... BloXroute Regulated
13238134 4 3157 1736 +1421 blockdaemon 0x8527d16c... Ultra Sound
13242313 4 3156 1736 +1420 0x850b00e0... Flashbots
13242054 9 3272 1861 +1411 blockdaemon 0xb26f9666... Titan Relay
13237366 11 3320 1911 +1409 p2porg 0xb67eaa5e... BloXroute Max Profit
13240054 5 3170 1761 +1409 everstake 0xb26f9666... Titan Relay
13241046 6 3194 1786 +1408 blockdaemon 0x853b0078... Ultra Sound
13242123 3 3116 1711 +1405 bitstamp 0x853b0078... Titan Relay
13243497 3 3114 1711 +1403 0xb26f9666... Titan Relay
13243133 3 3111 1711 +1400 ether.fi 0xb26f9666... Titan Relay
13237985 0 3031 1636 +1395 nethermind_lido 0x8527d16c... Ultra Sound
13237764 4 3128 1736 +1392 p2porg 0xb67eaa5e... BloXroute Max Profit
13237821 4 3127 1736 +1391 everstake 0xb26f9666... Titan Relay
13241441 6 3172 1786 +1386 revolut 0xb26f9666... Titan Relay
13237270 3 3095 1711 +1384 p2porg 0x855b00e6... BloXroute Max Profit
13240915 3 3093 1711 +1382 0x853b0078... Ultra Sound
13240621 6 3166 1786 +1380 rocketpool Local Local
13239066 6 3156 1786 +1370 0xb67eaa5e... BloXroute Regulated
13242300 0 3005 1636 +1369 0x8527d16c... Ultra Sound
13241910 5 3127 1761 +1366 abyss_finance 0xb67eaa5e... BloXroute Max Profit
13241971 0 3001 1636 +1365 everstake 0x823e0146... Aestus
13241043 5 3125 1761 +1364 revolut 0x853b0078... Ultra Sound
13241503 3 3074 1711 +1363 0x853b0078... Aestus
13237382 3 3074 1711 +1363 everstake 0xb26f9666... Titan Relay
13243648 3 3073 1711 +1362 senseinode_lido 0x88857150... Ultra Sound
13243243 0 2998 1636 +1362 gateway.fmas_lido 0x805e28e6... BloXroute Regulated
13243090 8 3194 1836 +1358 0x82c466b9... Flashbots
13240789 6 3144 1786 +1358 0x88a53ec4... BloXroute Regulated
13244125 6 3143 1786 +1357 everstake 0x853b0078... Ultra Sound
13240324 9 3213 1861 +1352 p2porg 0x853b0078... Agnostic Gnosis
13244292 9 3212 1861 +1351 luno 0x8527d16c... Ultra Sound
13241472 3 3062 1711 +1351 everstake 0x8527d16c... Ultra Sound
13239079 4 3073 1736 +1337 figment 0x856b0004... Aestus
13243623 4 3073 1736 +1337 revolut 0x8527d16c... Ultra Sound
13241052 3 3047 1711 +1336 0x8527d16c... Ultra Sound
13239573 1 2997 1661 +1336 gateway.fmas_lido 0x8db2a99d... Aestus
13242794 3 3044 1711 +1333 figment 0x853b0078... Agnostic Gnosis
13242099 6 3116 1786 +1330 0xb7c5beef... Titan Relay
13244352 3 3039 1711 +1328 ether.fi 0x850b00e0... Flashbots
13238252 4 3062 1736 +1326 p2porg 0xac23f8cc... Flashbots
13242665 4 3062 1736 +1326 everstake 0x8527d16c... Ultra Sound
13241357 3 3036 1711 +1325 p2porg 0x8527d16c... Ultra Sound
13240244 3 3036 1711 +1325 p2porg 0x8527d16c... Ultra Sound
13240884 13 3281 1961 +1320 blockdaemon_lido 0xb26f9666... Titan Relay
13243495 0 2955 1636 +1319 0xb67eaa5e... BloXroute Regulated
13243002 7 3129 1811 +1318 p2porg 0x8527d16c... Ultra Sound
13242005 7 3129 1811 +1318 abyss_finance 0x853b0078... Aestus
13243870 4 3054 1736 +1318 gateway.fmas_lido 0x8527d16c... Ultra Sound
13238940 0 2953 1636 +1317 gateway.fmas_lido 0x856b0004... Agnostic Gnosis
13238798 12 3250 1936 +1314 p2porg 0xb7c5e609... BloXroute Max Profit
13238481 4 3050 1736 +1314 everstake 0x853b0078... Agnostic Gnosis
13241193 7 3121 1811 +1310 p2porg 0x856b0004... Agnostic Gnosis
13243863 3 3020 1711 +1309 p2porg 0x8527d16c... Ultra Sound
13240380 0 2945 1636 +1309 everstake 0xb67eaa5e... BloXroute Max Profit
13238166 3 3017 1711 +1306 0x8527d16c... Ultra Sound
13240613 9 3166 1861 +1305 p2porg 0x856b0004... Aestus
13237753 3 3012 1711 +1301 0x8527d16c... Ultra Sound
13238793 7 3110 1811 +1299 0xb67eaa5e... BloXroute Max Profit
13243195 3 3010 1711 +1299 everstake 0xb26f9666... Titan Relay
13241970 11 3208 1911 +1297 figment 0x8527d16c... Ultra Sound
13238373 7 3106 1811 +1295 abyss_finance 0x88a53ec4... BloXroute Max Profit
13238139 4 3031 1736 +1295 gateway.fmas_lido 0x853b0078... Aestus
13238319 4 3030 1736 +1294 p2porg 0x853b0078... Agnostic Gnosis
13237388 4 3029 1736 +1293 p2porg 0x88a53ec4... BloXroute Max Profit
13240916 3 3004 1711 +1293 gateway.fmas_lido 0x8527d16c... Ultra Sound
13242823 3 3001 1711 +1290 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13241401 14 3275 1986 +1289 p2porg 0x8527d16c... Ultra Sound
13242566 6 3074 1786 +1288 figment 0x8527d16c... Ultra Sound
13244219 4 3024 1736 +1288 p2porg 0x856b0004... Agnostic Gnosis
13237823 3 2997 1711 +1286 0x8527d16c... Ultra Sound
13243085 3 2997 1711 +1286 everstake 0x856b0004... Agnostic Gnosis
13237942 0 2922 1636 +1286 gateway.fmas_lido 0x8527d16c... Ultra Sound
13237662 7 3096 1811 +1285 p2porg 0x856b0004... Ultra Sound
13239596 4 3021 1736 +1285 figment 0x853b0078... Agnostic Gnosis
13241875 8 3120 1836 +1284 0x8527d16c... Ultra Sound
13238005 6 3070 1786 +1284 0xb26f9666... EthGas
13242786 4 3019 1736 +1283 everstake 0x8527d16c... Ultra Sound
13242116 3 2994 1711 +1283 0x856b0004... Aestus
13237845 5 3043 1761 +1282 everstake 0x853b0078... Agnostic Gnosis
13240954 4 3017 1736 +1281 gateway.fmas_lido 0xac23f8cc... Flashbots
13243830 4 3017 1736 +1281 p2porg 0xb26f9666... Titan Relay
13240769 3 2992 1711 +1281 stakingfacilities_lido 0x8527d16c... Ultra Sound
13237879 3 2992 1711 +1281 gateway.fmas_lido 0x856b0004... Agnostic Gnosis
13237514 3 2992 1711 +1281 everstake 0x8db2a99d... Aestus
13237899 4 3016 1736 +1280 gateway.fmas_lido 0x8527d16c... Ultra Sound
13240696 0 2915 1636 +1279 gateway.fmas_lido 0x99dbe3e8... Agnostic Gnosis
13240281 7 3089 1811 +1278 0x8527d16c... Ultra Sound
13238573 8 3112 1836 +1276 0x8527d16c... Ultra Sound
13242544 3 2987 1711 +1276 0xb26f9666... Titan Relay
13238680 0 2912 1636 +1276 figment 0x88857150... Ultra Sound
13239552 7 3086 1811 +1275 everstake 0x82c466b9... Ultra Sound
13237870 5 3036 1761 +1275 gateway.fmas_lido 0x8db2a99d... Flashbots
13243374 3 2986 1711 +1275 0x853b0078... Agnostic Gnosis
13239612 3 2986 1711 +1275 p2porg 0x853b0078... Agnostic Gnosis
13243909 3 2982 1711 +1271 p2porg 0x8527d16c... Ultra Sound
13242783 4 3006 1736 +1270 stakingfacilities_lido 0x8527d16c... Ultra Sound
13237731 3 2978 1711 +1267 0x853b0078... Agnostic Gnosis
13239597 7 3077 1811 +1266 p2porg 0x8527d16c... Ultra Sound
13239691 5 3027 1761 +1266 p2porg 0x8527d16c... Ultra Sound
13240917 7 3073 1811 +1262 gateway.fmas_lido 0x8db2a99d... Flashbots
13237717 6 3048 1786 +1262 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13244111 3 2973 1711 +1262 everstake 0x8a850621... Ultra Sound
13241374 3 2973 1711 +1262 0xb26f9666... BloXroute Max Profit
13241377 9 3122 1861 +1261 p2porg 0x8527d16c... Ultra Sound
13240152 7 3072 1811 +1261 ether.fi 0xb67eaa5e... BloXroute Max Profit
13239168 10 3145 1886 +1259 0xb26f9666... BloXroute Max Profit
13242041 4 2995 1736 +1259 0xb67eaa5e... BloXroute Max Profit
13238126 5 3019 1761 +1258 0x853b0078... Agnostic Gnosis
13238563 4 2994 1736 +1258 0x88a53ec4... BloXroute Max Profit
13239148 9 3117 1861 +1256 p2porg 0x88a53ec4... BloXroute Max Profit
13240009 7 3065 1811 +1254 p2porg 0x853b0078... Agnostic Gnosis
13241719 8 3088 1836 +1252 p2porg 0x8527d16c... Ultra Sound
13244365 3 2962 1711 +1251 0x8db2a99d... Flashbots
13237635 7 3061 1811 +1250 everstake 0x853b0078... Agnostic Gnosis
13239639 4 2986 1736 +1250 0x8527d16c... Ultra Sound
13243436 1 2911 1661 +1250 p2porg 0xb26f9666... BloXroute Max Profit
13241800 7 3059 1811 +1248 0xb26f9666... Titan Relay
13243169 11 3157 1911 +1246 figment 0x853b0078... Agnostic Gnosis
13241526 4 2982 1736 +1246 everstake 0x88857150... Ultra Sound
13243009 0 2882 1636 +1246 p2porg 0xb26f9666... BloXroute Max Profit
13244251 3 2955 1711 +1244 everstake 0x8527d16c... Ultra Sound
13239957 12 3176 1936 +1240 everstake 0xb67eaa5e... BloXroute Max Profit
13238703 4 2976 1736 +1240 p2porg 0xac23f8cc... Flashbots
13238712 7 3048 1811 +1237 0x850b00e0... BloXroute Max Profit
13241901 4 2973 1736 +1237 0x8527d16c... Ultra Sound
13241278 10 3121 1886 +1235 p2porg 0x8527d16c... Ultra Sound
13243772 6 3018 1786 +1232 0x853b0078... Agnostic Gnosis
13240608 6 3017 1786 +1231 everstake 0xb26f9666... Titan Relay
13237738 4 2967 1736 +1231 0x8527d16c... Ultra Sound
13239789 11 3141 1911 +1230 0x88a53ec4... BloXroute Max Profit
13237433 3 2941 1711 +1230 0xb26f9666... BloXroute Regulated
13242568 5 2988 1761 +1227 gateway.fmas_lido 0x82c466b9... Flashbots
13243422 4 2963 1736 +1227 everstake 0x853b0078... Agnostic Gnosis
13239206 9 3087 1861 +1226 p2porg 0x88857150... Ultra Sound
13243566 3 2937 1711 +1226 0x8a850621... Ultra Sound
13243625 0 2861 1636 +1225 0x88a53ec4... BloXroute Regulated
13243209 7 3034 1811 +1223 0xb67eaa5e... BloXroute Regulated
13237658 3 2934 1711 +1223 0x850b00e0... BloXroute Max Profit
13238985 3 2934 1711 +1223 everstake 0xb26f9666... Titan Relay
13242125 6 3006 1786 +1220 0x88a53ec4... BloXroute Regulated
13240470 6 3005 1786 +1219 gateway.fmas_lido 0x8db2a99d... Flashbots
13240702 4 2954 1736 +1218 0xac23f8cc... Flashbots
13243645 5 2978 1761 +1217 0x823e0146... BloXroute Max Profit
13241611 3 2928 1711 +1217 everstake 0xac23f8cc... Agnostic Gnosis
13239831 4 2952 1736 +1216 everstake 0xb67eaa5e... BloXroute Regulated
13238840 4 2952 1736 +1216 everstake 0xb67eaa5e... BloXroute Regulated
13242626 12 3150 1936 +1214 0xb67eaa5e... BloXroute Regulated
13238358 6 3000 1786 +1214 gateway.fmas_lido 0x88857150... Ultra Sound
13244066 5 2975 1761 +1214 p2porg 0x823e0146... BloXroute Max Profit
13237736 10 3099 1886 +1213 0xb26f9666... BloXroute Max Profit
13237739 6 2999 1786 +1213 0x853b0078... BloXroute Max Profit
13243340 4 2949 1736 +1213 everstake 0x8db2a99d... Aestus
13243624 4 2949 1736 +1213 0x853b0078... Agnostic Gnosis
13237254 6 2997 1786 +1211 0x850b00e0... Ultra Sound
13238873 6 2996 1786 +1210 gateway.fmas_lido 0x8527d16c... Ultra Sound
13237690 5 2971 1761 +1210 everstake 0xb26f9666... Titan Relay
13242682 3 2921 1711 +1210 everstake 0xb26f9666... Aestus
13243499 6 2995 1786 +1209 gateway.fmas_lido 0x8527d16c... Ultra Sound
13240106 4 2945 1736 +1209 0x8527d16c... Ultra Sound
13240792 4 2944 1736 +1208 0x8527d16c... Ultra Sound
13239030 4 2943 1736 +1207 0x853b0078... Aestus
13243530 3 2918 1711 +1207 0x8527d16c... Ultra Sound
13243695 3 2916 1711 +1205 0x856b0004... Agnostic Gnosis
13241398 6 2990 1786 +1204 gateway.fmas_lido 0x8527d16c... Ultra Sound
13240750 6 2989 1786 +1203 everstake 0x853b0078... Aestus
13240576 4 2936 1736 +1200 0xb26f9666... EthGas
13242291 3 2911 1711 +1200 everstake 0x8db2a99d... Flashbots
13240354 0 2833 1636 +1197 figment 0xb67eaa5e... BloXroute Max Profit
13243716 4 2931 1736 +1195 gateway.fmas_lido 0x8db2a99d... Flashbots
13240487 3 2906 1711 +1195 0x853b0078... Ultra Sound
13240163 11 3102 1911 +1191 0xb67eaa5e... BloXroute Max Profit
13243613 9 3052 1861 +1191 0x8527d16c... Ultra Sound
13239926 7 3002 1811 +1191 0x8db2a99d... Flashbots
13241268 6 2976 1786 +1190 0xb26f9666... Ultra Sound
13242112 9 3049 1861 +1188 nethermind_lido 0x853b0078... Agnostic Gnosis
13242452 6 2974 1786 +1188 everstake 0xb67eaa5e... BloXroute Regulated
13243937 4 2924 1736 +1188 gateway.fmas_lido 0x853b0078... Agnostic Gnosis
13242013 4 2924 1736 +1188 everstake 0x856b0004... Ultra Sound
13239581 3 2899 1711 +1188 everstake 0x8527d16c... Ultra Sound
13241343 15 3197 2011 +1186 p2porg 0x856b0004... Ultra Sound
Total anomalies: 256

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})