Mon, Dec 15, 2025

Propagation anomalies - 2025-12-15

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-15' AND slot_start_date_time < '2025-12-15'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,166
MEV blocks: 6,657 (92.9%)
Local blocks: 509 (7.1%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1598.9 + 18.76 × blob_count (R² = 0.013)
Residual σ = 597.9ms
Anomalies (>2σ slow): 260 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13247204 0 10269 1599 +8670 Local Local
13249986 6 4904 1711 +3193 lido Local Local
13247622 0 4414 1599 +2815 solo_stakers Local Local
13244596 0 3747 1599 +2148 rocklogicgmbh_lido Local Local
13245696 3 3752 1655 +2097 stakefish 0x8527d16c... Ultra Sound
13249184 0 3653 1599 +2054 blockdaemon_lido Local Local
13247648 0 3616 1599 +2017 staked.us 0x8db2a99d... BloXroute Max Profit
13246677 0 3567 1599 +1968 revolut Local Local
13246685 12 3729 1824 +1905 blockdaemon 0x8a850621... Ultra Sound
13247584 0 3495 1599 +1896 blockdaemon Local Local
13248864 8 3631 1749 +1882 upbit Local Local
13247616 3 3520 1655 +1865 0x823e0146... Flashbots
13250577 7 3574 1730 +1844 rocklogicgmbh_lido 0xb26f9666... Titan Relay
13244483 4 3510 1674 +1836 0x850b00e0... Ultra Sound
13244944 3 3488 1655 +1833 blockdaemon 0x88510a78... BloXroute Regulated
13245136 3 3449 1655 +1794 0xb26f9666... Aestus
13245194 3 3445 1655 +1790 blockdaemon 0xb26f9666... Titan Relay
13250824 5 3466 1693 +1773 whale_0x183b 0xb26f9666... Aestus
13251108 2 3408 1636 +1772 blockdaemon 0xb26f9666... Titan Relay
13245549 4 3444 1674 +1770 blockdaemon 0x8527d16c... Ultra Sound
13250016 0 3355 1599 +1756 upbit 0x926b7905... BloXroute Max Profit
13248807 12 3535 1824 +1711 ether.fi 0x8527d16c... Ultra Sound
13244419 13 3541 1843 +1698 0x88a53ec4... BloXroute Max Profit
13248160 9 3458 1768 +1690 blockdaemon 0x8a850621... Ultra Sound
13250584 5 3367 1693 +1674 0x88857150... Ultra Sound
13250710 6 3376 1711 +1665 0x8527d16c... Ultra Sound
13247465 7 3378 1730 +1648 blockdaemon 0x853b0078... Ultra Sound
13244913 13 3489 1843 +1646 0x8527d16c... Ultra Sound
13244688 3 3294 1655 +1639 blockdaemon 0x8a850621... Ultra Sound
13249910 10 3416 1786 +1630 blockdaemon 0x88857150... Ultra Sound
13249408 0 3217 1599 +1618 gateway.fmas_lido 0x99dbe3e8... Ultra Sound
13248384 3 3269 1655 +1614 gateway.fmas_lido 0x856b0004... Aestus
13245093 14 3462 1862 +1600 0x8527d16c... Ultra Sound
13245156 3 3238 1655 +1583 ether.fi 0x88857150... Ultra Sound
13246938 3 3232 1655 +1577 blockdaemon_lido 0x850b00e0... Ultra Sound
13249869 4 3242 1674 +1568 blockdaemon_lido 0x850b00e0... Ultra Sound
13251434 5 3259 1693 +1566 0x853b0078... Ultra Sound
13249536 0 3156 1599 +1557 abyss_finance 0x852b0070... Aestus
13246570 0 3143 1599 +1544 blockdaemon 0x853b0078... Ultra Sound
13248764 0 3140 1599 +1541 blockdaemon 0x856b0004... Ultra Sound
13248360 4 3209 1674 +1535 blockdaemon_lido 0xb26f9666... Titan Relay
13245344 4 3197 1674 +1523 whale_0xe389 Local Local
13247072 6 3233 1711 +1522 nethermind_lido 0xb26f9666... Titan Relay
13248134 8 3258 1749 +1509 blockdaemon_lido 0x850b00e0... Ultra Sound
13244486 7 3238 1730 +1508 blockdaemon_lido 0x856b0004... Ultra Sound
13245502 4 3170 1674 +1496 luno 0x853b0078... Ultra Sound
13249524 9 3262 1768 +1494 p2porg 0x88a53ec4... BloXroute Max Profit
13250208 1 3106 1618 +1488 gateway.fmas_lido 0x853b0078... Ultra Sound
13248309 8 3228 1749 +1479 blockdaemon 0x850b00e0... BloXroute Regulated
13247723 4 3148 1674 +1474 blockdaemon 0x8527d16c... Ultra Sound
13250611 1 3090 1618 +1472 blockdaemon 0x82c466b9... BloXroute Regulated
13250585 4 3146 1674 +1472 blockdaemon 0x8527d16c... Ultra Sound
13245542 3 3127 1655 +1472 blockdaemon 0xb67eaa5e... BloXroute Regulated
13245718 8 3219 1749 +1470 blockdaemon 0x88a53ec4... BloXroute Regulated
13248877 7 3199 1730 +1469 0x856b0004... Ultra Sound
13245633 3 3122 1655 +1467 stakingfacilities_lido 0x856b0004... Ultra Sound
13248341 3 3120 1655 +1465 revolut 0xb26f9666... Titan Relay
13247488 7 3190 1730 +1460 p2porg 0xb26f9666... BloXroute Max Profit
13247647 3 3108 1655 +1453 blockdaemon 0xb7c5e609... BloXroute Regulated
13248014 5 3142 1693 +1449 p2porg 0x856b0004... Ultra Sound
13247646 7 3178 1730 +1448 blockdaemon 0x8527d16c... Ultra Sound
13246621 6 3155 1711 +1444 revolut 0x853b0078... Ultra Sound
13249671 0 3041 1599 +1442 p2porg 0x8527d16c... Ultra Sound
13246681 3 3091 1655 +1436 solo_stakers Local Local
13249354 0 3031 1599 +1432 p2porg 0xa1da2978... Ultra Sound
13250715 4 3105 1674 +1431 blockdaemon 0x91b123d8... BloXroute Regulated
13247537 0 3028 1599 +1429 p2porg 0xb26f9666... BloXroute Max Profit
13248737 11 3233 1805 +1428 luno 0xb26f9666... Titan Relay
13249780 3 3080 1655 +1425 0x88a53ec4... BloXroute Regulated
13245587 7 3151 1730 +1421 blockdaemon 0x853b0078... Ultra Sound
13249298 8 3169 1749 +1420 0x88a53ec4... BloXroute Regulated
13245795 4 3092 1674 +1418 0x8527d16c... Ultra Sound
13245263 7 3148 1730 +1418 0x88510a78... Flashbots
13250218 0 3015 1599 +1416 gateway.fmas_lido 0x852b0070... Agnostic Gnosis
13246619 1 3032 1618 +1414 gateway.fmas_lido 0x8db2a99d... Flashbots
13250213 4 3088 1674 +1414 revolut 0xb26f9666... Titan Relay
13250578 7 3138 1730 +1408 0x850b00e0... BloXroute Regulated
13245047 10 3194 1786 +1408 p2porg 0x855b00e6... Flashbots
13247729 3 3060 1655 +1405 0x853b0078... Titan Relay
13247106 8 3151 1749 +1402 0x855b00e6... BloXroute Max Profit
13248220 3 3051 1655 +1396 p2porg 0x823e0146... Flashbots
13250617 7 3125 1730 +1395 blockdaemon 0x853b0078... Ultra Sound
13248875 8 3140 1749 +1391 p2porg 0x8db2a99d... BloXroute Max Profit
13249107 10 3177 1786 +1391 luno 0xb26f9666... Titan Relay
13246098 7 3118 1730 +1388 gateway.fmas_lido 0x853b0078... Agnostic Gnosis
13247703 5 3078 1693 +1385 p2porg 0xb26f9666... Titan Relay
13251505 0 2975 1599 +1376 revolut 0x853b0078... Titan Relay
13250067 1 2993 1618 +1375 gateway.fmas_lido 0x8db2a99d... Flashbots
13247238 3 3028 1655 +1373 figment 0x8527d16c... Ultra Sound
13250678 4 3046 1674 +1372 0x88a53ec4... BloXroute Max Profit
13245346 3 3026 1655 +1371 everstake 0x8527d16c... Ultra Sound
13247011 3 3025 1655 +1370 p2porg 0x88857150... Ultra Sound
13247078 3 3021 1655 +1366 p2porg 0xb26f9666... Titan Relay
13248933 0 2960 1599 +1361 p2porg 0x852b0070... Ultra Sound
13244717 6 3070 1711 +1359 0xb26f9666... Aestus
13248446 3 3013 1655 +1358 revolut 0x8527d16c... Ultra Sound
13246999 3 3010 1655 +1355 0xb26f9666... BloXroute Regulated
13248867 10 3136 1786 +1350 revolut 0x855b00e6... Ultra Sound
13245260 4 3023 1674 +1349 0x82c466b9... Flashbots
13249451 3 3004 1655 +1349 0xb67eaa5e... BloXroute Max Profit
13250109 9 3115 1768 +1347 0x853b0078... Ultra Sound
13249152 3 2999 1655 +1344 ether.fi 0x856b0004... Agnostic Gnosis
13247165 6 3055 1711 +1344 figment 0xb67eaa5e... BloXroute Max Profit
13246634 6 3054 1711 +1343 everstake 0x853b0078... Aestus
13246418 3 2996 1655 +1341 gateway.fmas_lido 0x8527d16c... Ultra Sound
13246171 3 2996 1655 +1341 bitstamp 0x8527d16c... Ultra Sound
13244438 7 3070 1730 +1340 p2porg 0x856b0004... Ultra Sound
13251124 0 2938 1599 +1339 0x852b0070... Agnostic Gnosis
13246032 10 3125 1786 +1339 p2porg 0xb26f9666... BloXroute Regulated
13249898 3 2991 1655 +1336 p2porg 0x823e0146... BloXroute Max Profit
13249032 6 3045 1711 +1334 p2porg 0x88a53ec4... BloXroute Max Profit
13250336 8 3081 1749 +1332 solo_stakers 0xb67eaa5e... Titan Relay
13251225 9 3099 1768 +1331 blockdaemon 0xb26f9666... Titan Relay
13244420 6 3041 1711 +1330 gateway.fmas_lido 0x853b0078... Ultra Sound
13251377 8 3078 1749 +1329 blockdaemon 0x853b0078... Ultra Sound
13247456 0 2926 1599 +1327 everstake 0x8db2a99d... Agnostic Gnosis
13247232 0 2925 1599 +1326 everstake 0xb26f9666... Titan Relay
13245671 4 3000 1674 +1326 p2porg 0x8db2a99d... Flashbots
13244561 3 2980 1655 +1325 0x8527d16c... Ultra Sound
13248467 4 2998 1674 +1324 0x853b0078... Agnostic Gnosis
13246377 15 3204 1880 +1324 0x856b0004... Ultra Sound
13246586 3 2977 1655 +1322 0x8527d16c... Ultra Sound
13249341 5 3014 1693 +1321 0xb26f9666... BloXroute Max Profit
13245628 4 2994 1674 +1320 p2porg 0x856b0004... Aestus
13245443 2 2955 1636 +1319 0xb26f9666... Titan Relay
13246644 3 2973 1655 +1318 0xb26f9666... BloXroute Max Profit
13248680 3 2971 1655 +1316 gateway.fmas_lido 0x82c466b9... Ultra Sound
13247281 0 2914 1599 +1315 gateway.fmas_lido 0x8db2a99d... Flashbots
13247740 7 3045 1730 +1315 0x853b0078... Ultra Sound
13250152 3 2969 1655 +1314 upbit 0x853b0078... Ultra Sound
13250263 15 3193 1880 +1313 revolut 0x88a53ec4... BloXroute Regulated
13245764 1 2930 1618 +1312 p2porg 0x88857150... Ultra Sound
13247652 3 2967 1655 +1312 0x8527d16c... Ultra Sound
13250289 3 2964 1655 +1309 everstake 0xb26f9666... Titan Relay
13245254 0 2907 1599 +1308 gateway.fmas_lido 0x853b0078... Aestus
13246056 8 3056 1749 +1307 p2porg 0x8527d16c... Ultra Sound
13248596 12 3131 1824 +1307 blockdaemon 0x856b0004... Ultra Sound
13247627 1 2924 1618 +1306 figment 0x8527d16c... Ultra Sound
13244443 0 2904 1599 +1305 everstake 0xb26f9666... Titan Relay
13248041 4 2979 1674 +1305 gateway.fmas_lido 0x8db2a99d... Aestus
13250704 14 3166 1862 +1304 blockdaemon 0xb7c5e609... BloXroute Regulated
13245780 9 3072 1768 +1304 figment 0x88857150... Ultra Sound
13248907 14 3165 1862 +1303 p2porg 0xb67eaa5e... BloXroute Max Profit
13244631 10 3089 1786 +1303 0x855b00e6... Flashbots
13248420 4 2974 1674 +1300 0x88510a78... BloXroute Regulated
13248215 9 3064 1768 +1296 p2porg 0x856b0004... Ultra Sound
13246211 4 2970 1674 +1296 0xb26f9666... BloXroute Max Profit
13248521 8 3044 1749 +1295 0x853b0078... Ultra Sound
13246364 6 3006 1711 +1295 p2porg 0x853b0078... BloXroute Max Profit
13246656 13 3136 1843 +1293 everstake 0x855b00e6... Flashbots
13246150 12 3117 1824 +1293 figment 0x88857150... Ultra Sound
13245824 3 2948 1655 +1293 blockscape_lido 0x8527d16c... Ultra Sound
13249601 6 3004 1711 +1293 everstake 0xb26f9666... Titan Relay
13246762 5 2983 1693 +1290 0x855b00e6... BloXroute Max Profit
13245338 3 2942 1655 +1287 0xb26f9666... Titan Relay
13250247 1 2904 1618 +1286 stakingfacilities_lido 0x8527d16c... Ultra Sound
13249486 5 2979 1693 +1286 p2porg 0x853b0078... Agnostic Gnosis
13249904 3 2941 1655 +1286 p2porg 0xb26f9666... BloXroute Regulated
13248540 6 2996 1711 +1285 everstake 0x853b0078... Aestus
13250552 15 3164 1880 +1284 p2porg 0x8527d16c... Ultra Sound
13250324 3 2937 1655 +1282 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13248962 7 3012 1730 +1282 stakingfacilities_lido 0x8527d16c... Ultra Sound
13248672 6 2992 1711 +1281 everstake 0x8527d16c... Ultra Sound
13250566 3 2935 1655 +1280 p2porg 0x8527d16c... Ultra Sound
13246636 13 3122 1843 +1279 0x8527d16c... Ultra Sound
13250620 7 3009 1730 +1279 everstake 0x8db2a99d... Aestus
13251595 0 2877 1599 +1278 p2porg 0x852b0070... Ultra Sound
13248464 4 2952 1674 +1278 gateway.fmas_lido 0x8527d16c... Ultra Sound
13244814 4 2952 1674 +1278 p2porg 0x823e0146... Flashbots
13246176 5 2970 1693 +1277 0x8a850621... Ultra Sound
13249598 6 2988 1711 +1277 everstake 0xb26f9666... Titan Relay
13250519 0 2875 1599 +1276 everstake 0x88857150... Ultra Sound
13247751 8 3025 1749 +1276 p2porg 0x850b00e0... BloXroute Max Profit
13245083 1 2893 1618 +1275 0x853b0078... Aestus
13248316 12 3098 1824 +1274 p2porg 0x853b0078... Agnostic Gnosis
13245712 0 2872 1599 +1273 figment 0x8527d16c... Ultra Sound
13245373 4 2946 1674 +1272 0x8527d16c... Ultra Sound
13247876 3 2927 1655 +1272 gateway.fmas_lido 0x8db2a99d... Flashbots
13244412 13 3114 1843 +1271 everstake 0x88857150... Ultra Sound
13248929 15 3151 1880 +1271 p2porg 0x8527d16c... Ultra Sound
13250184 5 2961 1693 +1268 0x850b00e0... Flashbots
13248073 3 2923 1655 +1268 0x8527d16c... Ultra Sound
13246312 0 2866 1599 +1267 everstake 0xb26f9666... Titan Relay
13248325 0 2865 1599 +1266 gateway.fmas_lido 0xa1da2978... Ultra Sound
13245665 8 3015 1749 +1266 p2porg 0x8527d16c... Ultra Sound
13250113 0 2864 1599 +1265 gateway.fmas_lido 0x99dbe3e8... Ultra Sound
13246472 8 3014 1749 +1265 0xb26f9666... Ultra Sound
13246351 3 2920 1655 +1265 0x8527d16c... Ultra Sound
13246263 5 2954 1693 +1261 p2porg 0x8527d16c... Ultra Sound
13246039 8 3010 1749 +1261 figment 0x8527d16c... Ultra Sound
13246594 0 2859 1599 +1260 0x8db2a99d... Agnostic Gnosis
13245711 8 3009 1749 +1260 0x853b0078... Agnostic Gnosis
13248447 4 2931 1674 +1257 0x856b0004... Agnostic Gnosis
13246561 0 2854 1599 +1255 everstake 0xb26f9666... Titan Relay
13247443 4 2926 1674 +1252 gateway.fmas_lido 0x8db2a99d... Agnostic Gnosis
13250202 3 2907 1655 +1252 gateway.fmas_lido 0x8db2a99d... Flashbots
13250818 7 2982 1730 +1252 figment 0xb26f9666... BloXroute Max Profit
13250513 4 2924 1674 +1250 figment 0x8527d16c... Ultra Sound
13246218 5 2942 1693 +1249 gateway.fmas_lido 0x8527d16c... Ultra Sound
13249853 3 2904 1655 +1249 everstake 0xb26f9666... Titan Relay
13249250 7 2979 1730 +1249 0x8527d16c... Ultra Sound
13245244 9 3016 1768 +1248 0xb67eaa5e... BloXroute Max Profit
13245944 4 2922 1674 +1248 gateway.fmas_lido 0x853b0078... Aestus
13244787 5 2940 1693 +1247 gateway.fmas_lido 0x8527d16c... Ultra Sound
13248700 6 2958 1711 +1247 gateway.fmas_lido 0x8527d16c... Ultra Sound
13245572 3 2901 1655 +1246 gateway.fmas_lido 0x8527d16c... Ultra Sound
13248946 3 2901 1655 +1246 0x88857150... Ultra Sound
13249516 0 2844 1599 +1245 0x852b0070... Ultra Sound
13244846 8 2993 1749 +1244 0xb26f9666... Aestus
13247557 9 3011 1768 +1243 stakingfacilities_lido 0x8527d16c... Ultra Sound
13250488 15 3122 1880 +1242 blockdaemon 0xb26f9666... Titan Relay
13245878 1 2859 1618 +1241 0x8527d16c... Ultra Sound
13250252 7 2970 1730 +1240 0xb67eaa5e... BloXroute Max Profit
13247398 6 2951 1711 +1240 0x8527d16c... Ultra Sound
13251591 9 3007 1768 +1239 everstake 0xac23f8cc... Agnostic Gnosis
13247098 3 2894 1655 +1239 gateway.fmas_lido 0x8527d16c... Ultra Sound
13249771 5 2929 1693 +1236 0x8db2a99d... Flashbots
13245784 7 2965 1730 +1235 0xb67eaa5e... BloXroute Max Profit
13250762 0 2832 1599 +1233 everstake 0xb26f9666... Titan Relay
13251021 1 2850 1618 +1232 p2porg 0x8db2a99d... BloXroute Max Profit
13244674 5 2925 1693 +1232 blockdaemon 0x8527d16c... Ultra Sound
13244548 0 2831 1599 +1232 blockdaemon 0x8a850621... Ultra Sound
13249195 0 2830 1599 +1231 everstake 0xa1da2978... Ultra Sound
13244617 5 2923 1693 +1230 0xb26f9666... Titan Relay
13246284 4 2904 1674 +1230 0x8527d16c... Ultra Sound
13248943 0 2828 1599 +1229 figment 0xa412c4b8... Flashbots
13249303 4 2902 1674 +1228 0x8527d16c... Ultra Sound
13250417 7 2958 1730 +1228 p2porg 0x8527d16c... Ultra Sound
13247008 2 2864 1636 +1228 everstake 0xb26f9666... Aestus
13251388 8 2975 1749 +1226 0x853b0078... Aestus
13246537 7 2953 1730 +1223 0x8527d16c... Ultra Sound
13248655 3 2877 1655 +1222 0x856b0004... Agnostic Gnosis
13247494 1 2838 1618 +1220 0xb67eaa5e... Ultra Sound
13249936 4 2893 1674 +1219 0x8527d16c... Ultra Sound
13250744 3 2873 1655 +1218 0x856b0004... Agnostic Gnosis
13248391 6 2929 1711 +1218 everstake 0xb26f9666... Titan Relay
13249145 6 2928 1711 +1217 0xb7c5e609... BloXroute Max Profit
13250663 0 2815 1599 +1216 0x8527d16c... Ultra Sound
13245859 6 2927 1711 +1216 0x8527d16c... Ultra Sound
13244429 7 2945 1730 +1215 p2porg 0x8527d16c... Ultra Sound
13250913 2 2849 1636 +1213 everstake 0x8db2a99d... Flashbots
13251467 0 2811 1599 +1212 gateway.fmas_lido 0x852b0070... Agnostic Gnosis
13246751 3 2867 1655 +1212 0x8527d16c... Ultra Sound
13247933 4 2885 1674 +1211 0x8527d16c... Ultra Sound
13246340 0 2809 1599 +1210 0x852b0070... Aestus
13249635 8 2958 1749 +1209 bitstamp 0x853b0078... Ultra Sound
13244598 6 2919 1711 +1208 gateway.fmas_lido 0x8527d16c... Ultra Sound
13247875 1 2825 1618 +1207 blockdaemon 0x853b0078... Ultra Sound
13245452 9 2975 1768 +1207 gateway.fmas_lido 0x8527d16c... Ultra Sound
13246886 0 2805 1599 +1206 0x823e0146... Flashbots
13245287 9 2973 1768 +1205 p2porg 0x8527d16c... Ultra Sound
13250447 0 2803 1599 +1204 everstake 0x926b7905... Flashbots
13250776 5 2896 1693 +1203 gateway.fmas_lido 0x8527d16c... Ultra Sound
13248538 11 3008 1805 +1203 stakingfacilities_lido 0x8527d16c... Ultra Sound
13246278 6 2913 1711 +1202 0x88857150... Ultra Sound
13245986 6 2911 1711 +1200 everstake 0x8527d16c... Ultra Sound
13247400 6 2910 1711 +1199 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13247445 8 2947 1749 +1198 0xb26f9666... Ultra Sound
13245627 7 2927 1730 +1197 0x856b0004... Ultra Sound
13248173 6 2908 1711 +1197 0x853b0078... Ultra Sound
Total anomalies: 260

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})