Sat, Jan 31, 2026

Propagation anomalies - 2026-01-31

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-31' AND slot_start_date_time < '2026-01-31'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,179
MEV blocks: 6,709 (93.5%)
Local blocks: 470 (6.5%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1813.6 + 17.73 × blob_count (R² = 0.018)
Residual σ = 644.6ms
Anomalies (>2σ slow): 214 (3.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13588480 0 7724 1814 +5910 abyss_finance Local Local
13588641 0 7273 1814 +5459 solo_stakers Local Local
13588140 0 5617 1814 +3803 senseinode_lido Local Local
13587634 0 4965 1814 +3151 solo_stakers Local Local
13587872 0 4768 1814 +2954 sigmaprime_lido Local Local
13587372 0 4586 1814 +2772 Local Local
13586244 0 4183 1814 +2369 lido Local Local
13589886 0 4129 1814 +2315 everstake Local Local
13589788 0 4094 1814 +2280 stakin_lido Local Local
13586784 0 4068 1814 +2254 senseinode_lido Local Local
13586016 0 3906 1814 +2092 upbit Local Local
13589292 0 3891 1814 +2077 whale_0x0ec2 Local Local
13589983 5 3912 1902 +2010 0x855b00e6... BloXroute Max Profit
13582960 8 3898 1955 +1943 blockdaemon 0x8a850621... Titan Relay
13585344 0 3704 1814 +1890 figment 0x851b00b1... Ultra Sound
13587447 1 3718 1831 +1887 0xb67eaa5e... Titan Relay
13585218 0 3667 1814 +1853 lido 0x88857150... Ultra Sound
13587389 0 3642 1814 +1828 0xb26f9666... Titan Relay
13587824 4 3690 1885 +1805 everstake 0xb67eaa5e... BloXroute Regulated
13588897 8 3755 1955 +1800 everstake 0xb67eaa5e... BloXroute Regulated
13589216 1 3617 1831 +1786 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13583770 0 3590 1814 +1776 blockdaemon Local Local
13585258 2 3622 1849 +1773 blockdaemon 0x853b0078... Titan Relay
13587301 12 3791 2026 +1765 revolut 0xb67eaa5e... Titan Relay
13586371 6 3676 1920 +1756 0x850b00e0... BloXroute Regulated
13587840 0 3560 1814 +1746 stakingfacilities_lido 0xb26f9666... BloXroute Max Profit
13588517 0 3556 1814 +1742 0xb26f9666... Titan Relay
13585635 0 3549 1814 +1735 0x8527d16c... Ultra Sound
13585716 0 3541 1814 +1727 0x8527d16c... Ultra Sound
13583232 8 3675 1955 +1720 bridgetower_lido 0x88857150... Ultra Sound
13584139 0 3514 1814 +1700 ether.fi 0x8527d16c... Ultra Sound
13582954 5 3596 1902 +1694 blockdaemon 0x82c466b9... BloXroute Regulated
13588169 3 3559 1867 +1692 nethermind_lido 0x88a53ec4... BloXroute Regulated
13585885 6 3602 1920 +1682 0x8527d16c... Ultra Sound
13586303 7 3619 1938 +1681 0x850b00e0... BloXroute Regulated
13584908 8 3631 1955 +1676 blockdaemon 0xb26f9666... Titan Relay
13584848 0 3488 1814 +1674 revolut 0x91a8729e... Ultra Sound
13586697 9 3647 1973 +1674 everstake 0x88a53ec4... BloXroute Regulated
13588280 9 3647 1973 +1674 blockdaemon 0xb26f9666... Titan Relay
13586498 0 3482 1814 +1668 ether.fi 0xb26f9666... Titan Relay
13585914 6 3588 1920 +1668 ether.fi 0x850b00e0... BloXroute Max Profit
13585155 7 3599 1938 +1661 0xb67eaa5e... BloXroute Regulated
13589860 11 3653 2009 +1644 0x8527d16c... Ultra Sound
13584617 0 3444 1814 +1630 whale_0xdd6c 0x8527d16c... Ultra Sound
13586290 6 3536 1920 +1616 whale_0xdd6c 0x855b00e6... BloXroute Max Profit
13588640 5 3517 1902 +1615 bitstamp 0xb67eaa5e... BloXroute Max Profit
13586731 12 3639 2026 +1613 0xb26f9666... Titan Relay
13586867 5 3508 1902 +1606 blockdaemon 0xb4ce6162... Ultra Sound
13585199 6 3523 1920 +1603 everstake 0x850b00e0... BloXroute Max Profit
13585824 4 3487 1885 +1602 0xb67eaa5e... BloXroute Max Profit
13588259 4 3485 1885 +1600 blockdaemon 0x855b00e6... Ultra Sound
13584738 6 3512 1920 +1592 0x8c4ed5e2... Titan Relay
13588162 6 3511 1920 +1591 blockdaemon 0x88a53ec4... BloXroute Regulated
13589372 12 3613 2026 +1587 0x856b0004... BloXroute Max Profit
13584759 6 3505 1920 +1585 ether.fi 0x8527d16c... Ultra Sound
13587037 12 3606 2026 +1580 figment 0x853b0078... Ultra Sound
13589419 0 3376 1814 +1562 0xb67eaa5e... Titan Relay
13583508 0 3374 1814 +1560 Local Local
13584160 3 3427 1867 +1560 Local Local
13587265 5 3461 1902 +1559 everstake 0xb67eaa5e... BloXroute Regulated
13586076 8 3513 1955 +1558 blockdaemon 0x88a53ec4... BloXroute Regulated
13586692 7 3493 1938 +1555 0x8c4ed5e2... Titan Relay
13587016 7 3491 1938 +1553 luno 0x850b00e0... BloXroute Regulated
13585769 5 3451 1902 +1549 everstake 0x88857150... Ultra Sound
13588723 13 3590 2044 +1546 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13586321 6 3463 1920 +1543 ether.fi 0x88a53ec4... BloXroute Regulated
13583872 19 3691 2151 +1540 blockdaemon_lido 0x855b00e6... Ultra Sound
13587072 0 3344 1814 +1530 p2porg 0x851b00b1... BloXroute Max Profit
13588080 0 3343 1814 +1529 0x850b00e0... BloXroute Max Profit
13588526 12 3554 2026 +1528 0x850b00e0... BloXroute Regulated
13587114 19 3661 2151 +1510 revolut 0xb7c5c39a... BloXroute Regulated
13588995 11 3519 2009 +1510 ether.fi 0x8527d16c... Ultra Sound
13589454 0 3323 1814 +1509 blockdaemon 0xb26f9666... Titan Relay
13584277 19 3658 2151 +1507 0xb26f9666... Titan Relay
13586272 3 3372 1867 +1505 everstake 0xb26f9666... Titan Relay
13583417 4 3380 1885 +1495 p2porg 0x850b00e0... BloXroute Regulated
13586804 8 3449 1955 +1494 blockdaemon 0x8a850621... Ultra Sound
13583771 8 3443 1955 +1488 blockdaemon_lido Local Local
13586464 1 3314 1831 +1483 ether.fi 0x853b0078... BloXroute Max Profit
13584315 0 3294 1814 +1480 blockdaemon_lido 0x91a8729e... Ultra Sound
13587970 0 3288 1814 +1474 0x99dbe3e8... Ultra Sound
13588550 0 3282 1814 +1468 blockdaemon_lido 0x88857150... Ultra Sound
13589628 5 3359 1902 +1457 0xb26f9666... Titan Relay
13587867 21 3642 2186 +1456 0xb26f9666... Ultra Sound
13588815 5 3353 1902 +1451 blockdaemon_lido 0xb26f9666... Titan Relay
13584495 0 3263 1814 +1449 everstake 0xb26f9666... Titan Relay
13587952 0 3262 1814 +1448 0xb26f9666... Titan Relay
13588073 0 3259 1814 +1445 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13586728 2 3288 1849 +1439 blockdaemon_lido 0xb26f9666... Titan Relay
13587701 20 3601 2168 +1433 p2porg 0x88a53ec4... BloXroute Regulated
13588822 8 3387 1955 +1432 blockdaemon_lido 0xb67eaa5e... Titan Relay
13587874 20 3599 2168 +1431 kraken 0xb26f9666... EthGas
13588801 5 3332 1902 +1430 blockdaemon_lido 0xb26f9666... Titan Relay
13585224 2 3276 1849 +1427 0xb26f9666... Titan Relay
13583055 4 3310 1885 +1425 revolut 0xb26f9666... Titan Relay
13583726 3 3292 1867 +1425 blockdaemon 0xb26f9666... Titan Relay
13583669 3 3291 1867 +1424 blockdaemon_lido 0x823e0146... BloXroute Max Profit
13584511 5 3326 1902 +1424 blockdaemon 0x91b123d8... BloXroute Regulated
13589842 5 3324 1902 +1422 blockdaemon_lido 0xb26f9666... Titan Relay
13583311 5 3322 1902 +1420 everstake 0x88a53ec4... BloXroute Regulated
13583089 0 3233 1814 +1419 0x82c466b9... BloXroute Regulated
13588050 5 3321 1902 +1419 p2porg 0xb67eaa5e... BloXroute Max Profit
13589441 5 3321 1902 +1419 0xb67eaa5e... BloXroute Max Profit
13583716 1 3248 1831 +1417 blockdaemon 0x88510a78... BloXroute Regulated
13586695 3 3283 1867 +1416 0x88a53ec4... BloXroute Max Profit
13588563 16 3513 2097 +1416 0x850b00e0... BloXroute Regulated
13584004 5 3317 1902 +1415 0x88a53ec4... BloXroute Max Profit
13587945 0 3228 1814 +1414 blockdaemon_lido 0xb26f9666... Titan Relay
13585821 5 3312 1902 +1410 blockdaemon 0x88857150... Ultra Sound
13586172 5 3309 1902 +1407 0xb67eaa5e... BloXroute Max Profit
13587875 0 3217 1814 +1403 blockdaemon 0x851b00b1... Ultra Sound
13589826 0 3217 1814 +1403 0x851b00b1... Flashbots
13586062 9 3376 1973 +1403 luno 0x8527d16c... Ultra Sound
13588970 5 3305 1902 +1403 blockdaemon_lido 0x88510a78... BloXroute Regulated
13585692 5 3300 1902 +1398 figment 0x855b00e6... BloXroute Max Profit
13585124 1 3225 1831 +1394 0x850b00e0... BloXroute Max Profit
13585911 3 3259 1867 +1392 0xb26f9666... Titan Relay
13589245 3 3258 1867 +1391 0xb26f9666... Titan Relay
13583587 12 3417 2026 +1391 everstake 0xb67eaa5e... BloXroute Max Profit
13588519 5 3289 1902 +1387 revolut 0x850b00e0... BloXroute Regulated
13586431 5 3288 1902 +1386 everstake 0xb26f9666... Titan Relay
13586337 8 3338 1955 +1383 blockdaemon 0xb26f9666... Titan Relay
13583776 7 3319 1938 +1381 everstake 0x860d4173... BloXroute Max Profit
13587731 9 3354 1973 +1381 luno 0x8527d16c... Ultra Sound
13588062 4 3265 1885 +1380 everstake 0x856b0004... BloXroute Max Profit
13588784 5 3281 1902 +1379 blockdaemon 0x82c466b9... BloXroute Regulated
13587241 8 3333 1955 +1378 blockdaemon_lido 0xb26f9666... Titan Relay
13585882 2 3223 1849 +1374 everstake 0x853b0078... Agnostic Gnosis
13589903 6 3288 1920 +1368 everstake 0x856b0004... BloXroute Max Profit
13588084 1 3199 1831 +1368 0x8a850621... Ultra Sound
13583350 6 3286 1920 +1366 blockdaemon 0x82c466b9... BloXroute Regulated
13583276 2 3212 1849 +1363 everstake 0xa230e2cf... Flashbots
13589411 0 3171 1814 +1357 0x91a8729e... BloXroute Max Profit
13583924 5 3259 1902 +1357 0xb67eaa5e... BloXroute Regulated
13584254 5 3259 1902 +1357 everstake 0x8527d16c... Ultra Sound
13583810 5 3258 1902 +1356 everstake 0xb67eaa5e... BloXroute Max Profit
13584647 5 3256 1902 +1354 0xb26f9666... Titan Relay
13589341 0 3166 1814 +1352 everstake 0x852b0070... BloXroute Max Profit
13586610 9 3323 1973 +1350 0x850b00e0... BloXroute Max Profit
13585860 5 3252 1902 +1350 0x850b00e0... BloXroute Regulated
13589859 13 3391 2044 +1347 p2porg_lido 0x88a53ec4... BloXroute Regulated
13585908 0 3156 1814 +1342 0xb26f9666... Titan Relay
13583762 5 3243 1902 +1341 0xb67eaa5e... BloXroute Regulated
13583784 5 3243 1902 +1341 blockdaemon 0xb26f9666... Titan Relay
13586191 5 3243 1902 +1341 everstake 0x8527d16c... Ultra Sound
13584655 8 3296 1955 +1341 everstake 0xb26f9666... Titan Relay
13587005 0 3153 1814 +1339 0x88a53ec4... BloXroute Regulated
13586055 6 3259 1920 +1339 bitstamp 0xb67eaa5e... BloXroute Regulated
13586252 0 3152 1814 +1338 0xb26f9666... Titan Relay
13589412 0 3151 1814 +1337 0x853b0078... Titan Relay
13587009 6 3257 1920 +1337 kraken 0xb26f9666... EthGas
13586745 2 3184 1849 +1335 everstake 0xb26f9666... Titan Relay
13584870 5 3237 1902 +1335 0x850b00e0... BloXroute Max Profit
13583506 2 3183 1849 +1334 ether.fi 0x82c466b9... EthGas
13584106 14 3395 2062 +1333 luno 0xb26f9666... Titan Relay
13587903 3 3198 1867 +1331 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13588890 8 3286 1955 +1331 stakingfacilities_lido 0xb67eaa5e... BloXroute Regulated
13584898 8 3286 1955 +1331 p2porg 0x850b00e0... BloXroute Max Profit
13583217 13 3373 2044 +1329 blockdaemon Local Local
13582963 3 3195 1867 +1328 blockdaemon_lido 0x853b0078... Titan Relay
13582877 4 3211 1885 +1326 blockdaemon_lido 0xb26f9666... Titan Relay
13587026 11 3331 2009 +1322 0xb26f9666... BloXroute Regulated
13584214 5 3224 1902 +1322 0xb26f9666... BloXroute Regulated
13588794 9 3293 1973 +1320 ether.fi 0x850b00e0... BloXroute Max Profit
13589375 4 3204 1885 +1319 p2porg 0xb26f9666... Titan Relay
13586533 0 3133 1814 +1319 0x855b00e6... BloXroute Max Profit
13587054 21 3505 2186 +1319 0xb7c5beef... BloXroute Max Profit
13584778 11 3327 2009 +1318 blockdaemon 0x8527d16c... Ultra Sound
13585681 3 3185 1867 +1318 everstake 0xb26f9666... Titan Relay
13585876 6 3238 1920 +1318 0x850b00e0... BloXroute Regulated
13584622 7 3255 1938 +1317 0x855b00e6... BloXroute Max Profit
13585318 5 3219 1902 +1317 everstake 0x853b0078... Aestus
13585429 12 3343 2026 +1317 p2porg 0x850b00e0... BloXroute Regulated
13588394 0 3130 1814 +1316 0x88a53ec4... BloXroute Regulated
13582898 6 3236 1920 +1316 everstake 0xb26f9666... Titan Relay
13583099 5 3218 1902 +1316 0x850b00e0... BloXroute Regulated
13586887 0 3129 1814 +1315 0x88a53ec4... BloXroute Max Profit
13586007 6 3235 1920 +1315 mantle 0x853b0078... Aestus
13585512 6 3235 1920 +1315 p2porg 0x850b00e0... BloXroute Regulated
13587880 19 3465 2151 +1314 blockdaemon_lido 0x88857150... Ultra Sound
13589193 3 3181 1867 +1314 0x88a53ec4... BloXroute Max Profit
13584066 10 3305 1991 +1314 everstake 0xb26f9666... Titan Relay
13584569 1 3144 1831 +1313 everstake 0x8527d16c... Ultra Sound
13583145 5 3214 1902 +1312 p2porg 0xb67eaa5e... BloXroute Max Profit
13586283 1 3143 1831 +1312 everstake 0x853b0078... Aestus
13586966 6 3231 1920 +1311 everstake 0xb26f9666... BloXroute Max Profit
13588007 20 3479 2168 +1311 p2porg 0x850b00e0... BloXroute Regulated
13589208 1 3142 1831 +1311 whale_0xe985 0x850b00e0... Flashbots
13583413 0 3122 1814 +1308 everstake Local Local
13589263 12 3334 2026 +1308 blockdaemon_lido 0x8527d16c... Ultra Sound
13588924 20 3475 2168 +1307 blockdaemon 0x8527d16c... Ultra Sound
13584690 0 3117 1814 +1303 0x91b123d8... BloXroute Regulated
13588491 11 3311 2009 +1302 0xb67eaa5e... BloXroute Regulated
13587398 2 3151 1849 +1302 0x88a53ec4... BloXroute Regulated
13589343 1 3133 1831 +1302 p2porg 0xb67eaa5e... BloXroute Max Profit
13588011 0 3115 1814 +1301 everstake 0xb67eaa5e... BloXroute Regulated
13588518 20 3469 2168 +1301 figment 0x8527d16c... Ultra Sound
13587891 16 3398 2097 +1301 0xb67eaa5e... BloXroute Max Profit
13587526 1 3130 1831 +1299 ether.fi 0xb26f9666... Titan Relay
13583524 9 3270 1973 +1297 stakingfacilities_lido 0x850b00e0... BloXroute Regulated
13589085 16 3394 2097 +1297 bitstamp 0x855b00e6... BloXroute Max Profit
13587352 0 3110 1814 +1296 abyss_finance 0x91a8729e... Aestus
13586404 6 3216 1920 +1296 0xb4ce6162... Ultra Sound
13586619 7 3233 1938 +1295 everstake 0xb26f9666... Titan Relay
13583028 5 3197 1902 +1295 0xb67eaa5e... BloXroute Regulated
13589115 5 3197 1902 +1295 0xb67eaa5e... BloXroute Regulated
13583345 11 3303 2009 +1294 0xb67eaa5e... BloXroute Regulated
13588191 2 3143 1849 +1294 0xb67eaa5e... BloXroute Max Profit
13583516 3 3160 1867 +1293 0x860d4173... Flashbots
13588696 0 3106 1814 +1292 p2porg 0xb26f9666... BloXroute Max Profit
13588862 6 3212 1920 +1292 mantle 0x88857150... Ultra Sound
13584660 0 3104 1814 +1290 0x860d4173... BloXroute Max Profit
13589730 0 3103 1814 +1289 0xb67eaa5e... BloXroute Regulated
13589646 7 3227 1938 +1289 everstake 0x88a53ec4... BloXroute Max Profit
Total anomalies: 214

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})