Sun, Feb 1, 2026

Propagation anomalies - 2026-02-01

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-01' AND slot_start_date_time < '2026-02-01'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,179
MEV blocks: 6,737 (93.8%)
Local blocks: 442 (6.2%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1819.3 + 15.27 × blob_count (R² = 0.012)
Residual σ = 643.5ms
Anomalies (>2σ slow): 212 (3.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13592837 0 9474 1819 +7655 ether.fi Local Local
13591648 0 7778 1819 +5959 abyss_finance Local Local
13590108 0 6824 1819 +5005 abyss_finance Local Local
13596098 0 6284 1819 +4465 abyss_finance Local Local
13592544 0 6257 1819 +4438 abyss_finance Local Local
13593184 1 5744 1835 +3909 upbit Local Local
13590225 0 5646 1819 +3827 senseinode_lido Local Local
13594605 0 5587 1819 +3768 figment Local Local
13596032 0 5570 1819 +3751 upbit Local Local
13595520 15 5169 2048 +3121 solo_stakers Local Local
13595584 0 4371 1819 +2552 ether.fi Local Local
13590264 0 4293 1819 +2474 ether.fi Local Local
13590592 0 4188 1819 +2369 stakefish Local Local
13594788 12 4287 2003 +2284 Local Local
13594208 0 4068 1819 +2249 ether.fi Local Local
13596218 0 4067 1819 +2248 Local Local
13591419 0 3960 1819 +2141 lido Local Local
13596160 0 3944 1819 +2125 blockdaemon_lido Local Local
13594095 0 3867 1819 +2048 ether.fi Local Local
13595552 0 3777 1819 +1958 stakefish Local Local
13591552 15 3974 2048 +1926 0x88510a78... BloXroute Regulated
13591136 0 3741 1819 +1922 upbit 0xba003e46... BloXroute Regulated
13594544 4 3794 1880 +1914 blockdaemon_lido 0x855b00e6... Ultra Sound
13592933 11 3864 1987 +1877 0x88a53ec4... BloXroute Regulated
13593836 6 3785 1911 +1874 blockdaemon 0x8527d16c... Ultra Sound
13594256 0 3681 1819 +1862 0x8527d16c... Ultra Sound
13590824 0 3664 1819 +1845 lido 0x8527d16c... Ultra Sound
13591155 6 3731 1911 +1820 0xb67eaa5e... Titan Relay
13593216 2 3661 1850 +1811 figment 0x8527d16c... Ultra Sound
13590408 3 3668 1865 +1803 lido Local Local
13596465 9 3757 1957 +1800 0x8527d16c... Ultra Sound
13592229 1 3621 1835 +1786 blockdaemon 0x850b00e0... BloXroute Regulated
13596243 5 3668 1896 +1772 lido 0xb4ce6162... Ultra Sound
13590728 0 3579 1819 +1760 0x91a8729e... BloXroute Regulated
13596659 6 3664 1911 +1753 ether.fi 0xb67eaa5e... EthGas
13591765 6 3661 1911 +1750 0x850b00e0... BloXroute Regulated
13596331 0 3565 1819 +1746 0xb26f9666... Titan Relay
13596700 1 3580 1835 +1745 0xb26f9666... Titan Relay
13593300 9 3694 1957 +1737 0xb26f9666... Titan Relay
13595543 3 3599 1865 +1734 0x855b00e6... Ultra Sound
13592283 9 3664 1957 +1707 0x850b00e0... BloXroute Regulated
13593133 9 3661 1957 +1704 0xb26f9666... BloXroute Regulated
13590458 8 3632 1942 +1690 ether.fi 0xb67eaa5e... BloXroute Regulated
13597048 0 3506 1819 +1687 0x8527d16c... Ultra Sound
13591805 5 3577 1896 +1681 lido 0x88a53ec4... BloXroute Max Profit
13595990 5 3576 1896 +1680 0x82c466b9... BloXroute Regulated
13593472 3 3540 1865 +1675 stakefish 0x8527d16c... Ultra Sound
13591165 13 3671 2018 +1653 whale_0xad1d 0xb67eaa5e... BloXroute Regulated
13595488 11 3633 1987 +1646 luno 0xb26f9666... Titan Relay
13592536 3 3496 1865 +1631 0xb4ce6162... Ultra Sound
13594824 5 3508 1896 +1612 0x8527d16c... Ultra Sound
13595241 10 3582 1972 +1610 coinbase Local Local
13596713 5 3501 1896 +1605 bitstamp 0x88a53ec4... BloXroute Regulated
13595900 12 3589 2003 +1586 revolut 0x8527d16c... Ultra Sound
13590028 3 3435 1865 +1570 blockdaemon_lido 0xb67eaa5e... Titan Relay
13590170 0 3384 1819 +1565 blockdaemon_lido 0xb67eaa5e... Titan Relay
13592314 9 3515 1957 +1558 0xb67eaa5e... BloXroute Max Profit
13592493 9 3514 1957 +1557 figment 0x856b0004... BloXroute Max Profit
13593099 5 3452 1896 +1556 0xb67eaa5e... BloXroute Regulated
13591242 6 3453 1911 +1542 whale_0xdd6c 0xb67eaa5e... BloXroute Regulated
13595490 8 3483 1942 +1541 kraken 0xb26f9666... EthGas
13591105 0 3359 1819 +1540 everstake 0x8527d16c... Ultra Sound
13592414 10 3509 1972 +1537 lido 0x88a53ec4... BloXroute Max Profit
13592796 1 3367 1835 +1532 blockdaemon_lido 0x855b00e6... Ultra Sound
13597079 1 3355 1835 +1520 blockdaemon_lido 0x88857150... Ultra Sound
13590550 9 3473 1957 +1516 0x88a53ec4... BloXroute Regulated
13592579 6 3423 1911 +1512 0xb67eaa5e... BloXroute Regulated
13596998 21 3652 2140 +1512 blockdaemon 0x855b00e6... Ultra Sound
13595889 9 3465 1957 +1508 blockdaemon_lido 0xb67eaa5e... Titan Relay
13593446 1 3328 1835 +1493 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13591683 9 3450 1957 +1493 whale_0xad1d 0xb67eaa5e... BloXroute Max Profit
13591243 3 3354 1865 +1489 0x88a53ec4... BloXroute Max Profit
13592543 0 3299 1819 +1480 blockdaemon_lido 0x91a8729e... Ultra Sound
13590869 6 3384 1911 +1473 nethermind_lido 0xb67eaa5e... BloXroute Regulated
13590658 0 3287 1819 +1468 blockdaemon 0x91a8729e... BloXroute Regulated
13593585 9 3424 1957 +1467 blockdaemon 0x850b00e0... BloXroute Regulated
13594539 0 3285 1819 +1466 0x8a850621... Titan Relay
13590608 8 3407 1942 +1465 p2porg 0x855b00e6... BloXroute Max Profit
13595761 5 3358 1896 +1462 blockdaemon_lido 0xb26f9666... Titan Relay
13591396 2 3311 1850 +1461 blockdaemon 0x850b00e0... BloXroute Regulated
13593020 0 3279 1819 +1460 whale_0x7c1b 0x8527d16c... Ultra Sound
13593792 5 3355 1896 +1459 figment 0x850b00e0... BloXroute Max Profit
13592795 7 3384 1926 +1458 blockdaemon 0x8a850621... Titan Relay
13593381 1 3288 1835 +1453 0x850b00e0... BloXroute Max Profit
13591328 0 3269 1819 +1450 p2porg 0x91a8729e... BloXroute Max Profit
13593556 8 3387 1942 +1445 blockdaemon 0xb26f9666... Titan Relay
13590836 3 3310 1865 +1445 0x850b00e0... BloXroute Regulated
13596965 15 3493 2048 +1445 0x850b00e0... BloXroute Regulated
13594463 2 3293 1850 +1443 0x8a850621... Titan Relay
13592829 6 3353 1911 +1442 0x853b0078... Titan Relay
13590672 3 3307 1865 +1442 luno 0xb26f9666... Titan Relay
13592988 11 3429 1987 +1442 p2porg 0x850b00e0... BloXroute Regulated
13593333 5 3335 1896 +1439 blockdaemon 0x8527d16c... Ultra Sound
13594290 5 3332 1896 +1436 blockdaemon 0x850b00e0... BloXroute Regulated
13596996 21 3572 2140 +1432 0x88a53ec4... BloXroute Regulated
13592849 6 3341 1911 +1430 blockdaemon_lido 0xb67eaa5e... Titan Relay
13594542 8 3370 1942 +1428 0x853b0078... Agnostic Gnosis
13594912 0 3247 1819 +1428 0x88a53ec4... BloXroute Max Profit
13593785 8 3367 1942 +1425 luno 0x850b00e0... BloXroute Regulated
13591323 11 3412 1987 +1425 blockdaemon_lido 0xb67eaa5e... Titan Relay
13590747 5 3319 1896 +1423 0x850b00e0... BloXroute Regulated
13591336 6 3334 1911 +1423 blockdaemon 0xb26f9666... Titan Relay
13591261 3 3287 1865 +1422 0xb26f9666... Titan Relay
13591968 12 3424 2003 +1421 0xb26f9666... Titan Relay
13595703 1 3256 1835 +1421 blockdaemon 0x8527d16c... Ultra Sound
13593226 11 3408 1987 +1421 0x8db2a99d... BloXroute Max Profit
13592878 8 3362 1942 +1420 blockdaemon_lido 0x88857150... Ultra Sound
13590612 0 3234 1819 +1415 p2porg 0x851b00b1... BloXroute Max Profit
13593518 0 3233 1819 +1414 blockdaemon 0xb26f9666... Titan Relay
13590762 0 3230 1819 +1411 0xb26f9666... Titan Relay
13594440 2 3260 1850 +1410 everstake 0xb67eaa5e... BloXroute Max Profit
13590959 1 3243 1835 +1408 0x88a53ec4... BloXroute Regulated
13594470 0 3225 1819 +1406 blockdaemon_lido 0x83bee517... BloXroute Regulated
13594772 4 3285 1880 +1405 0xac23f8cc... BloXroute Max Profit
13596989 7 3330 1926 +1404 0x88a53ec4... BloXroute Max Profit
13596703 0 3223 1819 +1404 blockdaemon_lido 0x91a8729e... Ultra Sound
13594568 0 3223 1819 +1404 revolut 0xb26f9666... Titan Relay
13595189 14 3435 2033 +1402 0x8527d16c... Ultra Sound
13590415 14 3434 2033 +1401 0x850b00e0... BloXroute Max Profit
13596606 11 3388 1987 +1401 p2porg 0x850b00e0... BloXroute Max Profit
13590365 4 3280 1880 +1400 luno 0x8527d16c... Ultra Sound
13592645 6 3310 1911 +1399 luno 0x88857150... Ultra Sound
13590276 6 3309 1911 +1398 blockdaemon_lido 0xb26f9666... Titan Relay
13590464 0 3217 1819 +1398 p2porg 0x91b123d8... Flashbots
13591822 9 3354 1957 +1397 0xb67eaa5e... BloXroute Max Profit
13593185 13 3414 2018 +1396 p2porg 0xb26f9666... Titan Relay
13590054 3 3261 1865 +1396 figment 0xb26f9666... Titan Relay
13590528 6 3306 1911 +1395 0x856b0004... Titan Relay
13590007 1 3228 1835 +1393 p2porg 0x88a53ec4... BloXroute Regulated
13595402 2 3241 1850 +1391 0x88a53ec4... BloXroute Regulated
13596382 0 3210 1819 +1391 everstake 0x88a53ec4... BloXroute Regulated
13593097 11 3377 1987 +1390 blockdaemon 0x853b0078... Titan Relay
13590572 4 3270 1880 +1390 ether.fi 0xb67eaa5e... BloXroute Max Profit
13592546 0 3208 1819 +1389 everstake 0xb26f9666... Titan Relay
13594569 20 3513 2125 +1388 0x88a53ec4... BloXroute Max Profit
13590946 5 3283 1896 +1387 mantle 0xb67eaa5e... BloXroute Max Profit
13591905 10 3358 1972 +1386 blockdaemon_lido 0x8527d16c... Ultra Sound
13595995 13 3403 2018 +1385 p2porg 0x88a53ec4... BloXroute Max Profit
13594345 0 3204 1819 +1385 blockdaemon_lido 0xb26f9666... Titan Relay
13596310 6 3294 1911 +1383 0x88a53ec4... BloXroute Regulated
13594220 1 3213 1835 +1378 0x855b00e6... BloXroute Max Profit
13591442 3 3242 1865 +1377 blockdaemon_lido 0xb26f9666... Titan Relay
13591624 9 3333 1957 +1376 0x850b00e0... BloXroute Max Profit
13595334 0 3194 1819 +1375 bitstamp 0x99dbe3e8... Aestus
13595306 0 3191 1819 +1372 p2porg 0x9589cf28... Flashbots
13596826 8 3313 1942 +1371 p2porg 0x855b00e6... BloXroute Max Profit
13596013 8 3311 1942 +1369 0x850b00e0... BloXroute Regulated
13596788 8 3302 1942 +1360 0x8527d16c... Ultra Sound
13595684 8 3302 1942 +1360 0xb67eaa5e... BloXroute Regulated
13591616 4 3240 1880 +1360 0x855b00e6... Flashbots
13597101 7 3285 1926 +1359 0xb26f9666... Titan Relay
13595989 8 3300 1942 +1358 p2porg 0x850b00e0... BloXroute Regulated
13593286 5 3253 1896 +1357 0x853b0078... Titan Relay
13591729 10 3328 1972 +1356 luno 0x8527d16c... Ultra Sound
13592832 15 3404 2048 +1356 0xb26f9666... BloXroute Max Profit
13590724 3 3220 1865 +1355 blockdaemon_lido 0xb26f9666... Titan Relay
13594052 5 3248 1896 +1352 0x850b00e0... BloXroute Regulated
13595749 11 3337 1987 +1350 0x823e0146... BloXroute Max Profit
13596207 2 3199 1850 +1349 0x8db2a99d... BloXroute Max Profit
13594871 8 3289 1942 +1347 ether.fi 0x850b00e0... BloXroute Max Profit
13593121 0 3162 1819 +1343 p2porg 0x852b0070... Titan Relay
13591309 0 3162 1819 +1343 0x8a850621... Ultra Sound
13595876 7 3263 1926 +1337 everstake 0xac23f8cc... BloXroute Max Profit
13596316 1 3170 1835 +1335 everstake 0x823e0146... Flashbots
13594153 5 3231 1896 +1335 0x8a850621... Ultra Sound
13595367 10 3307 1972 +1335 0x8db2a99d... BloXroute Max Profit
13590679 7 3261 1926 +1335 blockdaemon 0xb26f9666... Titan Relay
13595123 5 3229 1896 +1333 bitstamp 0x88a53ec4... BloXroute Max Profit
13590799 5 3229 1896 +1333 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13591285 0 3152 1819 +1333 0x91a8729e... BloXroute Max Profit
13590131 5 3226 1896 +1330 p2porg 0x88a53ec4... BloXroute Max Profit
13596044 3 3191 1865 +1326 0xb26f9666... Titan Relay
13594512 15 3374 2048 +1326 ether.fi 0x8527d16c... Ultra Sound
13593232 13 3341 2018 +1323 blockdaemon_lido 0xb26f9666... Titan Relay
13590217 9 3279 1957 +1322 0xb67eaa5e... BloXroute Regulated
13592411 8 3263 1942 +1321 0x850b00e0... BloXroute Max Profit
13596902 0 3139 1819 +1320 0xb26f9666... Aestus
13594659 0 3137 1819 +1318 p2porg 0xb26f9666... BloXroute Max Profit
13594745 5 3213 1896 +1317 0xb26f9666... BloXroute Max Profit
13591861 3 3182 1865 +1317 everstake 0x88a53ec4... BloXroute Regulated
13595837 8 3258 1942 +1316 figment 0x856b0004... Aestus
13594163 0 3135 1819 +1316 0x8527d16c... Ultra Sound
13593730 5 3211 1896 +1315 0xb26f9666... Titan Relay
13590577 13 3333 2018 +1315 0x8527d16c... Ultra Sound
13591229 13 3329 2018 +1311 everstake 0x850b00e0... BloXroute Max Profit
13593289 3 3176 1865 +1311 p2porg 0x856b0004... Agnostic Gnosis
13590016 11 3298 1987 +1311 stakefish 0x850b00e0... BloXroute Max Profit
13595832 1 3145 1835 +1310 kelp 0x8527d16c... Ultra Sound
13592671 5 3205 1896 +1309 0x850b00e0... BloXroute Max Profit
13591486 2 3158 1850 +1308 p2porg 0x855b00e6... BloXroute Max Profit
13594170 6 3217 1911 +1306 0x8a850621... Ultra Sound
13595934 0 3125 1819 +1306 ether.fi 0x851b00b1... BloXroute Max Profit
13591519 0 3125 1819 +1306 solo_stakers 0x926b7905... Flashbots
13595292 11 3288 1987 +1301 0x88a53ec4... BloXroute Regulated
13590064 7 3225 1926 +1299 figment 0x853b0078... Aestus
13595529 9 3255 1957 +1298 0x850b00e0... BloXroute Max Profit
13596538 8 3239 1942 +1297 0x8527d16c... Ultra Sound
13592944 8 3238 1942 +1296 p2porg 0x855b00e6... BloXroute Max Profit
13594952 5 3192 1896 +1296 p2porg 0xb26f9666... BloXroute Max Profit
13591237 0 3115 1819 +1296 p2porg 0x8db2a99d... Flashbots
13591265 3 3160 1865 +1295 ether.fi 0x850b00e0... BloXroute Max Profit
13591565 0 3114 1819 +1295 0x850b00e0... BloXroute Max Profit
13594554 0 3113 1819 +1294 0x853b0078... BloXroute Max Profit
13595066 5 3189 1896 +1293 0xb26f9666... BloXroute Max Profit
13593572 0 3112 1819 +1293 0xb26f9666... Titan Relay
13596916 0 3111 1819 +1292 p2porg 0xb67eaa5e... BloXroute Max Profit
13596099 0 3111 1819 +1292 0x8ef8714b... BloXroute Regulated
13590525 6 3202 1911 +1291 gateway.fmas_lido 0x8db2a99d... Flashbots
13591514 0 3110 1819 +1291 kelp 0x8527d16c... Ultra Sound
13595596 3 3154 1865 +1289 0x853b0078... Titan Relay
13590816 7 3214 1926 +1288 everstake 0x853b0078... BloXroute Max Profit
13590669 1 3122 1835 +1287 0x853b0078... Aestus
Total anomalies: 212

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})