Sat, Feb 7, 2026

Propagation anomalies - 2026-02-07

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-07' AND slot_start_date_time < '2026-02-07'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,179
MEV blocks: 6,678 (93.0%)
Local blocks: 501 (7.0%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1814.1 + 17.96 × blob_count (R² = 0.014)
Residual σ = 676.5ms
Anomalies (>2σ slow): 172 (2.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13639832 0 16453 1814 +14639 csm_operator56_lido Local Local
13633952 5 9203 1904 +7299 solo_stakers Local Local
13638561 0 7217 1814 +5403 bridgetower_lido Local Local
13635767 6 6950 1922 +5028 solo_stakers Local Local
13633888 0 6034 1814 +4220 upbit Local Local
13636032 0 4412 1814 +2598 upbit Local Local
13634873 5 4471 1904 +2567 paralinker Local Local
13637287 0 4253 1814 +2439 ether.fi Local Local
13640224 0 4218 1814 +2404 stakefish Local Local
13639648 0 4155 1814 +2341 staked.us Local Local
13637090 0 4091 1814 +2277 blockdaemon_lido Local Local
13636704 0 4079 1814 +2265 Local Local
13640256 0 4025 1814 +2211 stakefish Local Local
13633530 0 3979 1814 +2165 ether.fi Local Local
13635905 14 4190 2066 +2124 0x853b0078... Ultra Sound
13639776 0 3928 1814 +2114 Local Local
13636538 0 3883 1814 +2069 sigmaprime_lido Local Local
13637576 0 3813 1814 +1999 kiln 0xb26f9666... Aestus
13634464 0 3786 1814 +1972 stakefish Local Local
13634297 11 3953 2012 +1941 coinbase 0xb26f9666... Aestus
13633418 8 3864 1958 +1906 simplystaking_lido Local Local
13638272 4 3775 1886 +1889 everstake 0x850b00e0... BloXroute Max Profit
13634329 6 3762 1922 +1840 stakingfacilities_lido 0xb67eaa5e... BloXroute Regulated
13633273 1 3657 1832 +1825 0x8527d16c... Ultra Sound
13634271 4 3704 1886 +1818 0xb26f9666... Titan Relay
13633421 9 3791 1976 +1815 lighthouseteam Local Local
13634071 1 3629 1832 +1797 0xb26f9666... Titan Relay
13639306 6 3718 1922 +1796 0x8527d16c... Ultra Sound
13636604 8 3727 1958 +1769 everstake 0xb26f9666... Titan Relay
13638511 0 3566 1814 +1752 figment 0x856b0004... Ultra Sound
13639201 1 3582 1832 +1750 ether.fi 0xb67eaa5e... BloXroute Max Profit
13633352 0 3554 1814 +1740 figment 0x853b0078... Ultra Sound
13635136 11 3746 2012 +1734 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13639558 6 3652 1922 +1730 blockdaemon 0xb26f9666... Titan Relay
13636900 21 3920 2191 +1729 senseinode_lido Local Local
13636821 0 3531 1814 +1717 ether.fi 0x91a8729e... BloXroute Max Profit
13636803 8 3674 1958 +1716 0x850b00e0... BloXroute Regulated
13635732 4 3593 1886 +1707 0x850b00e0... BloXroute Regulated
13638773 0 3519 1814 +1705 0x8527d16c... Ultra Sound
13636560 6 3619 1922 +1697 0xb26f9666... Titan Relay
13635895 5 3601 1904 +1697 0x853b0078... Titan Relay
13634256 5 3599 1904 +1695 0x8527d16c... Ultra Sound
13637122 5 3598 1904 +1694 0xb4ce6162... Ultra Sound
13639373 5 3593 1904 +1689 ether.fi 0x88a53ec4... BloXroute Regulated
13636896 0 3503 1814 +1689 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13633570 6 3603 1922 +1681 0x8527d16c... Ultra Sound
13639154 3 3542 1868 +1674 ether.fi 0xb7c5beef... Titan Relay
13636806 6 3591 1922 +1669 revolut 0xb26f9666... Titan Relay
13633364 0 3463 1814 +1649 everstake 0x852b0070... BloXroute Max Profit
13640277 5 3535 1904 +1631 0x88857150... Ultra Sound
13634622 3 3487 1868 +1619 0x88a53ec4... BloXroute Regulated
13635389 14 3668 2066 +1602 coinbase 0xb26f9666... Aestus
13634560 0 3398 1814 +1584 stakingfacilities_lido 0x88a53ec4... BloXroute Max Profit
13638913 3 3446 1868 +1578 blockdaemon 0x8a850621... Ultra Sound
13639137 8 3535 1958 +1577 figment 0x853b0078... Titan Relay
13633898 5 3479 1904 +1575 blockdaemon_lido 0xb67eaa5e... Titan Relay
13633334 5 3473 1904 +1569 blockdaemon_lido Local Local
13636450 0 3379 1814 +1565 everstake 0xb67eaa5e... BloXroute Max Profit
13634466 12 3593 2030 +1563 revolut 0x853b0078... Ultra Sound
13638476 16 3664 2101 +1563 0x8527d16c... Ultra Sound
13637778 6 3483 1922 +1561 ether.fi Local Local
13633696 0 3373 1814 +1559 stakingfacilities_lido 0x855b00e6... Flashbots
13638602 12 3587 2030 +1557 0x856b0004... Ultra Sound
13636709 0 3371 1814 +1557 everstake 0x88a53ec4... BloXroute Max Profit
13639487 6 3468 1922 +1546 ether.fi 0x8db2a99d... BloXroute Max Profit
13635221 3 3412 1868 +1544 everstake 0x88a53ec4... BloXroute Regulated
13633200 1 3372 1832 +1540 blockdaemon 0xb4ce6162... Ultra Sound
13639704 1 3366 1832 +1534 0x853b0078... BloXroute Regulated
13639649 0 3345 1814 +1531 blockdaemon_lido 0x805e28e6... BloXroute Regulated
13636616 0 3338 1814 +1524 blockdaemon 0x850b00e0... BloXroute Regulated
13638639 18 3657 2137 +1520 0xb67eaa5e... Titan Relay
13638850 4 3404 1886 +1518 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13638871 8 3475 1958 +1517 0xb67eaa5e... BloXroute Regulated
13634934 3 3383 1868 +1515 blockdaemon 0x850b00e0... BloXroute Regulated
13633734 0 3328 1814 +1514 0x857b0038... Ultra Sound
13634878 0 3325 1814 +1511 nethermind_lido 0x853b0078... Ultra Sound
13633370 3 3377 1868 +1509 everstake 0xb26f9666... Titan Relay
13637146 0 3323 1814 +1509 luno 0xb26f9666... Titan Relay
13634028 9 3482 1976 +1506 blockdaemon_lido 0xb67eaa5e... Titan Relay
13638746 3 3374 1868 +1506 everstake 0x88a53ec4... BloXroute Regulated
13636158 1 3338 1832 +1506 blockdaemon 0x8a850621... Ultra Sound
13638567 21 3696 2191 +1505 blockdaemon 0x856b0004... Ultra Sound
13637752 9 3474 1976 +1498 everstake 0x850b00e0... BloXroute Max Profit
13638835 0 3312 1814 +1498 everstake 0x8527d16c... Ultra Sound
13634415 1 3324 1832 +1492 everstake 0xb26f9666... Titan Relay
13634080 8 3449 1958 +1491 everstake 0x856b0004... Ultra Sound
13638382 7 3429 1940 +1489 blockdaemon_lido 0xb26f9666... Titan Relay
13637797 0 3303 1814 +1489 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13637215 8 3445 1958 +1487 coinbase 0xb26f9666... Aestus
13635712 1 3312 1832 +1480 bitstamp 0x8db2a99d... BloXroute Max Profit
13634980 5 3378 1904 +1474 everstake 0x853b0078... Aestus
13636911 1 3306 1832 +1474 everstake 0x853b0078... BloXroute Max Profit
13638766 0 3288 1814 +1474 blockdaemon 0xb26f9666... Titan Relay
13635762 8 3427 1958 +1469 whale_0xad1d 0x853b0078... BloXroute Max Profit
13633667 3 3337 1868 +1469 everstake 0x853b0078... BloXroute Max Profit
13633720 6 3388 1922 +1466 0xb26f9666... EthGas
13636529 0 3279 1814 +1465 blockdaemon_lido 0xb26f9666... Titan Relay
13639758 5 3368 1904 +1464 everstake 0x853b0078... BloXroute Max Profit
13635981 0 3278 1814 +1464 everstake 0x91a8729e... BloXroute Max Profit
13634865 4 3347 1886 +1461 everstake 0x88857150... Ultra Sound
13637644 0 3275 1814 +1461 0x99dbe3e8... Ultra Sound
13633640 0 3272 1814 +1458 blockdaemon 0x8527d16c... Ultra Sound
13638337 0 3269 1814 +1455 blockdaemon_lido 0xb26f9666... Titan Relay
13636114 5 3356 1904 +1452 blockdaemon 0xb67eaa5e... BloXroute Regulated
13639711 0 3266 1814 +1452 blockdaemon 0x856b0004... Ultra Sound
13639446 1 3282 1832 +1450 blockdaemon 0x860d4173... BloXroute Regulated
13635546 10 3441 1994 +1447 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13634361 7 3386 1940 +1446 everstake 0x853b0078... Aestus
13638860 6 3368 1922 +1446 blockdaemon 0x860d4173... BloXroute Regulated
13639056 17 3565 2119 +1446 everstake 0x850b00e0... BloXroute Max Profit
13636743 6 3365 1922 +1443 blockdaemon 0xb67eaa5e... Titan Relay
13636518 5 3345 1904 +1441 blockdaemon 0xb26f9666... Titan Relay
13634555 3 3307 1868 +1439 blockdaemon 0x82c466b9... BloXroute Regulated
13635077 9 3412 1976 +1436 ether.fi 0x853b0078... Ultra Sound
13636102 5 3339 1904 +1435 blockdaemon 0x853b0078... BloXroute Regulated
13637057 1 3267 1832 +1435 everstake 0xb26f9666... Titan Relay
13639449 9 3410 1976 +1434 everstake 0x88857150... Ultra Sound
13638927 0 3248 1814 +1434 everstake 0xb3b03e65... Flashbots
13639265 8 3390 1958 +1432 everstake 0x8527d16c... Ultra Sound
13638800 6 3354 1922 +1432 blockdaemon 0x88857150... Ultra Sound
13640213 0 3244 1814 +1430 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13636755 8 3386 1958 +1428 blockdaemon_lido 0xb67eaa5e... Titan Relay
13640192 0 3242 1814 +1428 0xb26f9666... Titan Relay
13633504 8 3384 1958 +1426 stakingfacilities_lido 0x8527d16c... Ultra Sound
13637544 3 3294 1868 +1426 everstake 0xac23f8cc... Flashbots
13636512 0 3240 1814 +1426 figment 0x8527d16c... Ultra Sound
13635336 3 3293 1868 +1425 0xb4ce6162... Ultra Sound
13633250 3 3292 1868 +1424 0x850b00e0... Flashbots
13636190 4 3309 1886 +1423 blockdaemon 0x850b00e0... BloXroute Regulated
13635680 6 3344 1922 +1422 p2porg 0xb67eaa5e... BloXroute Max Profit
13639205 13 3463 2048 +1415 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13634191 5 3319 1904 +1415 everstake 0xb26f9666... Titan Relay
13633661 0 3229 1814 +1415 everstake 0x853b0078... Agnostic Gnosis
13634402 0 3228 1814 +1414 luno 0x8527d16c... Ultra Sound
13638435 7 3353 1940 +1413 0x850b00e0... BloXroute Regulated
13636113 10 3406 1994 +1412 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13634436 5 3315 1904 +1411 blockdaemon_lido 0xb26f9666... Titan Relay
13640117 0 3222 1814 +1408 everstake 0x853b0078... Aestus
13634349 0 3216 1814 +1402 luno 0x8527d16c... Ultra Sound
13639751 0 3212 1814 +1398 0xa412c4b8... Flashbots
13638235 11 3408 2012 +1396 0x88a53ec4... BloXroute Max Profit
13636371 7 3336 1940 +1396 blockdaemon 0x853b0078... Ultra Sound
13639437 0 3208 1814 +1394 everstake 0xb26f9666... Titan Relay
13637147 6 3315 1922 +1393 nethermind_lido 0xb26f9666... Aestus
13635609 1 3225 1832 +1393 everstake 0x856b0004... Agnostic Gnosis
13636326 0 3206 1814 +1392 0xb26f9666... Titan Relay
13639718 8 3349 1958 +1391 figment 0xb26f9666... Titan Relay
13636403 0 3205 1814 +1391 luno 0x8527d16c... Ultra Sound
13633889 8 3348 1958 +1390 everstake Local Local
13637499 4 3276 1886 +1390 stakingfacilities_lido 0x853b0078... Ultra Sound
13635031 8 3347 1958 +1389 everstake 0x8527d16c... Ultra Sound
13635820 4 3269 1886 +1383 blockdaemon_lido 0x853b0078... Ultra Sound
13637621 4 3269 1886 +1383 0xb26f9666... Titan Relay
13638157 2 3233 1850 +1383 0x855b00e6... BloXroute Max Profit
13634163 6 3299 1922 +1377 0x853b0078... Ultra Sound
13634345 4 3260 1886 +1374 0x853b0078... Ultra Sound
13636772 0 3187 1814 +1373 blockdaemon_lido 0x853b0078... Ultra Sound
13634033 0 3184 1814 +1370 everstake 0x853b0078... BloXroute Regulated
13638814 6 3290 1922 +1368 whale_0x7c1b 0x8527d16c... Ultra Sound
13635634 6 3288 1922 +1366 solo_stakers 0x853b0078... Aestus
13634324 10 3358 1994 +1364 0xb26f9666... Titan Relay
13633315 8 3320 1958 +1362 p2porg 0x8527d16c... Ultra Sound
13635486 0 3176 1814 +1362 0x8527d16c... Ultra Sound
13639203 4 3247 1886 +1361 nethermind_lido 0x8527d16c... Ultra Sound
13635750 3 3229 1868 +1361 0x850b00e0... BloXroute Regulated
13635397 20 3534 2173 +1361 everstake 0xb67eaa5e... BloXroute Max Profit
13637683 1 3192 1832 +1360 p2porg 0x853b0078... Titan Relay
13638839 0 3174 1814 +1360 bitstamp 0x8527d16c... Ultra Sound
13635583 6 3279 1922 +1357 figment 0x853b0078... Ultra Sound
13638460 0 3171 1814 +1357 everstake 0xb26f9666... Titan Relay
13637739 2 3204 1850 +1354 blockdaemon_lido 0xb26f9666... Titan Relay
13634858 14 3419 2066 +1353 everstake 0x88a53ec4... BloXroute Max Profit
Total anomalies: 172

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})