Sun, Feb 8, 2026

Propagation anomalies - 2026-02-08

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-02-08' AND slot_start_date_time < '2026-02-08'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,129
MEV blocks: 6,579 (92.3%)
Local blocks: 550 (7.7%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1816.6 + 14.80 × blob_count (R² = 0.009)
Residual σ = 647.5ms
Anomalies (>2σ slow): 250 (3.5%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13643494 0 8225 1817 +6408 Local Local
13647375 0 6771 1817 +4954 cryptomanufaktur_lido Local Local
13643936 0 5669 1817 +3852 whale_0x88de Local Local
13642990 0 5194 1817 +3377 ether.fi Local Local
13646336 0 4657 1817 +2840 upbit Local Local
13643087 0 4555 1817 +2738 kucoin Local Local
13642336 0 4270 1817 +2453 upbit Local Local
13646016 3 4122 1861 +2261 blockdaemon_lido 0x8527d16c... Ultra Sound
13641417 1 4074 1831 +2243 stakingfacilities_lido 0x823e0146... Flashbots
13640822 0 4020 1817 +2203 nethermind_lido Local Local
13646912 0 3801 1817 +1984 blockdaemon_lido 0xb67eaa5e... Titan Relay
13646017 0 3787 1817 +1970 Local Local
13645920 0 3751 1817 +1934 Local Local
13642112 0 3737 1817 +1920 blockdaemon_lido Local Local
13646271 9 3858 1950 +1908 ether.fi 0x8db2a99d... Flashbots
13640779 0 3682 1817 +1865 Local Local
13644125 4 3684 1876 +1808 nethermind_lido 0x853b0078... Agnostic Gnosis
13642600 0 3617 1817 +1800 0xb26f9666... Titan Relay
13642902 0 3614 1817 +1797 0x853b0078... Ultra Sound
13642080 3 3658 1861 +1797 blockdaemon 0x8527d16c... Ultra Sound
13647566 7 3713 1920 +1793 whale_0xdd6c 0xb67eaa5e... BloXroute Max Profit
13645246 6 3692 1905 +1787 nethermind_lido 0xb26f9666... Titan Relay
13647458 7 3703 1920 +1783 coinbase Local Local
13642012 5 3673 1891 +1782 0x823e0146... Flashbots
13641216 0 3563 1817 +1746 ether.fi 0x8db2a99d... BloXroute Max Profit
13643246 3 3606 1861 +1745 0x856b0004... Ultra Sound
13642355 0 3560 1817 +1743 blockdaemon 0x8a850621... Ultra Sound
13643409 5 3630 1891 +1739 0x855b00e6... Ultra Sound
13642787 14 3747 2024 +1723 nethermind_lido 0xb26f9666... Titan Relay
13645226 5 3613 1891 +1722 0x853b0078... Ultra Sound
13645483 0 3538 1817 +1721 revolut 0x8527d16c... Ultra Sound
13647233 0 3537 1817 +1720 0x91b123d8... BloXroute Regulated
13641799 8 3655 1935 +1720 blockdaemon 0x8527d16c... Ultra Sound
13645068 13 3709 2009 +1700 nethermind_lido 0x853b0078... Agnostic Gnosis
13644619 13 3705 2009 +1696 nodeset 0xb67eaa5e... Titan Relay
13647024 5 3586 1891 +1695 0x8527d16c... Ultra Sound
13642940 8 3628 1935 +1693 lido Local Local
13642761 4 3567 1876 +1691 kraken 0x96b5d4d9... EthGas
13645779 0 3503 1817 +1686 0x91a8729e... BloXroute Regulated
13641280 11 3665 1979 +1686 ether.fi 0xb26f9666... Titan Relay
13641721 3 3528 1861 +1667 figment 0xb26f9666... BloXroute Regulated
13642198 3 3524 1861 +1663 solo_stakers 0x855b00e6... Flashbots
13643704 6 3567 1905 +1662 revolut 0x88857150... Ultra Sound
13646950 8 3593 1935 +1658 0x8527d16c... Ultra Sound
13645564 6 3560 1905 +1655 lido 0x850b00e0... BloXroute Max Profit
13640937 0 3451 1817 +1634 nethermind_lido Local Local
13641086 4 3498 1876 +1622 everstake 0x88a53ec4... BloXroute Max Profit
13641251 0 3436 1817 +1619 0x853b0078... Aestus
13646814 10 3584 1965 +1619 revolut 0xb26f9666... Titan Relay
13641584 3 3473 1861 +1612 nethermind_lido 0x88a53ec4... BloXroute Regulated
13645238 4 3485 1876 +1609 nethermind_lido 0x88a53ec4... BloXroute Regulated
13643561 9 3554 1950 +1604 everstake 0x8527d16c... Ultra Sound
13645363 1 3435 1831 +1604 Local Local
13642425 2 3449 1846 +1603 everstake 0x8527d16c... Ultra Sound
13642494 0 3418 1817 +1601 nethermind_lido 0x851b00b1... BloXroute Max Profit
13643929 4 3475 1876 +1599 nethermind_lido 0x856b0004... Agnostic Gnosis
13644535 5 3489 1891 +1598 0x850b00e0... BloXroute Regulated
13646429 0 3412 1817 +1595 nethermind_lido 0x851b00b1... Flashbots
13641793 0 3412 1817 +1595 blockdaemon_lido Local Local
13644835 3 3441 1861 +1580 everstake 0x88a53ec4... BloXroute Regulated
13646828 0 3395 1817 +1578 0xb4ce6162... Ultra Sound
13644111 6 3479 1905 +1574 blockdaemon_lido 0x855b00e6... Ultra Sound
13645904 14 3596 2024 +1572 nethermind_lido 0x853b0078... Aestus
13640804 1 3403 1831 +1572 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13640840 3 3431 1861 +1570 everstake 0x88a53ec4... BloXroute Max Profit
13642149 1 3396 1831 +1565 everstake 0x856b0004... Agnostic Gnosis
13645578 0 3375 1817 +1558 nethermind_lido 0xb67eaa5e... BloXroute Regulated
13644205 0 3373 1817 +1556 solo_stakers 0x853b0078... Aestus
13643273 8 3491 1935 +1556 abyss_finance Local Local
13644032 5 3446 1891 +1555 nethermind_lido 0x8527d16c... Ultra Sound
13643067 4 3426 1876 +1550 0x850b00e0... BloXroute Regulated
13642261 5 3440 1891 +1549 stakingfacilities_lido 0x850b00e0... BloXroute Max Profit
13646836 1 3380 1831 +1549 0xb4ce6162... Ultra Sound
13646479 4 3418 1876 +1542 everstake 0x850b00e0... BloXroute Max Profit
13641001 0 3358 1817 +1541 everstake 0x8527d16c... Ultra Sound
13644564 5 3432 1891 +1541 everstake 0xb26f9666... Titan Relay
13644756 6 3442 1905 +1537 everstake 0x853b0078... Ultra Sound
13645169 4 3403 1876 +1527 everstake 0x855b00e6... BloXroute Max Profit
13645091 15 3554 2039 +1515 nethermind_lido 0x8527d16c... Ultra Sound
13641192 1 3343 1831 +1512 bitstamp 0x853b0078... Agnostic Gnosis
13646237 5 3401 1891 +1510 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13642734 5 3395 1891 +1504 everstake 0x8db2a99d... Flashbots
13646880 6 3400 1905 +1495 p2porg 0x853b0078... Aestus
13643512 0 3304 1817 +1487 blockdaemon_lido 0xb67eaa5e... Titan Relay
13642883 4 3363 1876 +1487 blockdaemon_lido 0x853b0078... Ultra Sound
13643673 14 3509 2024 +1485 everstake 0x855b00e6... BloXroute Max Profit
13647219 11 3462 1979 +1483 ether.fi 0xb67eaa5e... BloXroute Regulated
13645308 0 3299 1817 +1482 blockdaemon 0x91a8729e... Ultra Sound
13645198 5 3370 1891 +1479 0x88a53ec4... BloXroute Regulated
13642313 3 3339 1861 +1478 blockdaemon 0x853b0078... Ultra Sound
13645251 7 3398 1920 +1478 everstake 0xb67eaa5e... BloXroute Max Profit
13643475 5 3367 1891 +1476 everstake 0xb26f9666... Titan Relay
13640538 1 3307 1831 +1476 blockdaemon_lido 0xb67eaa5e... Titan Relay
13643418 5 3366 1891 +1475 everstake 0x850b00e0... BloXroute Max Profit
13640495 0 3291 1817 +1474 everstake 0x88a53ec4... BloXroute Max Profit
13644553 0 3290 1817 +1473 blockdaemon 0x99dbe3e8... Ultra Sound
13642607 3 3332 1861 +1471 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13647242 3 3329 1861 +1468 luno 0x88a53ec4... BloXroute Regulated
13641743 6 3373 1905 +1468 revolut 0x860d4173... BloXroute Regulated
13647419 0 3282 1817 +1465 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13643374 6 3369 1905 +1464 everstake 0x8527d16c... Ultra Sound
13643514 0 3280 1817 +1463 blockdaemon 0xb67eaa5e... BloXroute Regulated
13644110 8 3397 1935 +1462 ether.fi 0x8a850621... EthGas
13646450 8 3395 1935 +1460 blockdaemon 0x82c466b9... BloXroute Regulated
13642895 13 3466 2009 +1457 p2porg 0x853b0078... Aestus
13645632 0 3272 1817 +1455 0x853b0078... BloXroute Regulated
13643124 5 3346 1891 +1455 blockdaemon 0xb67eaa5e... Titan Relay
13646935 2 3301 1846 +1455 0x850b00e0... Flashbots
13640900 5 3342 1891 +1451 ether.fi 0x8a850621... EthGas
13642416 5 3341 1891 +1450 0x850b00e0... BloXroute Regulated
13644558 4 3323 1876 +1447 0xb26f9666... Titan Relay
13641374 3 3308 1861 +1447 blockdaemon 0xb26f9666... Titan Relay
13646956 8 3382 1935 +1447 blockdaemon 0xb26f9666... Titan Relay
13647272 1 3271 1831 +1440 blockdaemon 0x853b0078... Ultra Sound
13644770 0 3256 1817 +1439 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13642699 3 3300 1861 +1439 blockdaemon_lido 0xb26f9666... Titan Relay
13645946 3 3299 1861 +1438 0x850b00e0... BloXroute Regulated
13641479 6 3342 1905 +1437 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13646052 6 3342 1905 +1437 0x850b00e0... Flashbots
13647474 0 3253 1817 +1436 everstake 0xb26f9666... Titan Relay
13642558 9 3383 1950 +1433 everstake 0xb67eaa5e... BloXroute Regulated
13645420 12 3426 1994 +1432 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13647031 5 3319 1891 +1428 0xb4ce6162... Ultra Sound
13644181 6 3332 1905 +1427 ether.fi 0xb67eaa5e... BloXroute Regulated
13641171 9 3376 1950 +1426 blockdaemon 0xb26f9666... Titan Relay
13644894 3 3286 1861 +1425 luno 0x853b0078... Ultra Sound
13644957 0 3239 1817 +1422 everstake 0xb26f9666... Titan Relay
13645504 14 3444 2024 +1420 everstake 0x850b00e0... BloXroute Max Profit
13644083 2 3265 1846 +1419 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13647402 1 3250 1831 +1419 everstake 0x856b0004... Agnostic Gnosis
13647578 3 3279 1861 +1418 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13644039 0 3234 1817 +1417 everstake 0x91a8729e... BloXroute Max Profit
13646857 3 3277 1861 +1416 everstake 0x88a53ec4... BloXroute Regulated
13644562 8 3350 1935 +1415 blockdaemon 0x8527d16c... Ultra Sound
13640969 8 3349 1935 +1414 everstake 0x855b00e6... BloXroute Max Profit
13645787 5 3303 1891 +1412 0x88510a78... BloXroute Regulated
13647010 6 3317 1905 +1412 blockdaemon 0x8527d16c... Ultra Sound
13641024 8 3346 1935 +1411 stakingfacilities_lido 0x8527d16c... Ultra Sound
13642296 0 3227 1817 +1410 blockdaemon_lido 0x853b0078... Ultra Sound
13644016 0 3227 1817 +1410 everstake 0x99dbe3e8... Agnostic Gnosis
13644721 8 3345 1935 +1410 everstake 0xb26f9666... Titan Relay
13643193 4 3284 1876 +1408 revolut 0x88a53ec4... BloXroute Regulated
13642338 5 3298 1891 +1407 everstake 0x850b00e0... BloXroute Max Profit
13642869 3 3265 1861 +1404 0x8527d16c... Ultra Sound
13642319 0 3219 1817 +1402 0xb67eaa5e... BloXroute Max Profit
13646805 8 3336 1935 +1401 everstake 0x8527d16c... Ultra Sound
13644936 8 3336 1935 +1401 p2porg 0x88a53ec4... BloXroute Max Profit
13641403 0 3217 1817 +1400 stakingfacilities_lido 0x88857150... Ultra Sound
13647477 11 3379 1979 +1400 blockdaemon_lido 0x853b0078... Ultra Sound
13642019 0 3215 1817 +1398 0x853b0078... Ultra Sound
13647152 5 3289 1891 +1398 luno 0x853b0078... BloXroute Regulated
13641816 8 3333 1935 +1398 0x8a850621... Titan Relay
13645369 4 3270 1876 +1394 solo_stakers 0x855b00e6... Flashbots
13645248 13 3403 2009 +1394 bitstamp 0x8527d16c... Ultra Sound
13643530 9 3342 1950 +1392 blockdaemon_lido 0xb26f9666... Titan Relay
13647547 5 3282 1891 +1391 stakingfacilities_lido 0x88a53ec4... BloXroute Regulated
13646002 0 3206 1817 +1389 everstake 0x855b00e6... BloXroute Max Profit
13643744 0 3206 1817 +1389 0x8527d16c... Ultra Sound
13641824 0 3204 1817 +1387 0x853b0078... Ultra Sound
13643998 4 3263 1876 +1387 everstake 0x856b0004... Ultra Sound
13642493 0 3202 1817 +1385 everstake 0x91a8729e... Ultra Sound
13640919 3 3246 1861 +1385 0x850b00e0... BloXroute Regulated
13642154 0 3201 1817 +1384 solo_stakers Local Local
13647517 15 3423 2039 +1384 blockdaemon 0xb26f9666... Titan Relay
13641289 6 3287 1905 +1382 everstake 0x853b0078... Agnostic Gnosis
13643792 10 3343 1965 +1378 0x850b00e0... BloXroute Max Profit
13643809 6 3283 1905 +1378 bitstamp 0x853b0078... Ultra Sound
13645334 3 3237 1861 +1376 everstake 0xb26f9666... Titan Relay
13643330 12 3369 1994 +1375 everstake 0x853b0078... BloXroute Max Profit
13647021 5 3264 1891 +1373 everstake 0x88a53ec4... BloXroute Max Profit
13642594 1 3204 1831 +1373 0x856b0004... Ultra Sound
13643934 12 3365 1994 +1371 luno 0x853b0078... Ultra Sound
13643594 5 3260 1891 +1369 everstake 0x856b0004... Ultra Sound
13644942 16 3419 2053 +1366 0x856b0004... Agnostic Gnosis
13643419 0 3181 1817 +1364 blockdaemon 0xb26f9666... Titan Relay
13642669 4 3240 1876 +1364 0x88857150... Ultra Sound
13640583 4 3240 1876 +1364 blockdaemon_lido 0x8527d16c... Ultra Sound
13646103 9 3314 1950 +1364 everstake 0x856b0004... Ultra Sound
13644877 8 3299 1935 +1364 blockdaemon 0x853b0078... Ultra Sound
13640991 0 3179 1817 +1362 everstake 0xb26f9666... Titan Relay
13644272 9 3312 1950 +1362 blockdaemon_lido 0xb26f9666... Titan Relay
13645180 5 3252 1891 +1361 everstake 0xb26f9666... Aestus
13643944 3 3222 1861 +1361 blockdaemon 0x853b0078... Ultra Sound
13642601 3 3218 1861 +1357 p2porg 0xb26f9666... BloXroute Regulated
13641809 9 3304 1950 +1354 blockdaemon_lido 0x856b0004... Ultra Sound
13644136 3 3215 1861 +1354 0x853b0078... Ultra Sound
13644675 6 3256 1905 +1351 everstake 0x853b0078... Aestus
13645233 11 3330 1979 +1351 luno 0x853b0078... Ultra Sound
13641028 1 3181 1831 +1350 0x823e0146... BloXroute Max Profit
13647241 8 3284 1935 +1349 luno 0x853b0078... Ultra Sound
13643434 11 3328 1979 +1349 luno 0xb26f9666... Titan Relay
13646850 5 3237 1891 +1346 0x88a53ec4... BloXroute Max Profit
13641731 8 3281 1935 +1346 0x860d4173... BloXroute Max Profit
13640512 7 3265 1920 +1345 p2porg 0xb67eaa5e... BloXroute Max Profit
13642548 0 3161 1817 +1344 stakingfacilities_lido 0xb67eaa5e... BloXroute Regulated
13643444 16 3396 2053 +1343 0xb67eaa5e... BloXroute Regulated
13642665 11 3319 1979 +1340 0x853b0078... Agnostic Gnosis
13642996 9 3289 1950 +1339 figment 0x855b00e6... BloXroute Max Profit
13645427 8 3274 1935 +1339 everstake 0xb26f9666... Titan Relay
13641361 2 3185 1846 +1339 0x82c466b9... Flashbots
13644879 4 3213 1876 +1337 blockdaemon 0xb26f9666... Titan Relay
13645167 9 3287 1950 +1337 blockdaemon_lido 0xb26f9666... Titan Relay
13643577 10 3301 1965 +1336 blockdaemon_lido 0x853b0078... BloXroute Regulated
13647065 8 3271 1935 +1336 everstake 0x88a53ec4... BloXroute Regulated
13640425 1 3167 1831 +1336 0x8527d16c... Ultra Sound
13640563 0 3152 1817 +1335 p2porg 0x850b00e0... BloXroute Regulated
13642311 5 3226 1891 +1335 0xb67eaa5e... BloXroute Max Profit
13641875 5 3225 1891 +1334 ether.fi 0x8527d16c... Ultra Sound
13640901 5 3225 1891 +1334 ether.fi 0x8a850621... EthGas
13641457 8 3269 1935 +1334 everstake 0x88a53ec4... BloXroute Max Profit
13644500 10 3298 1965 +1333 p2porg 0x853b0078... Ultra Sound
13645937 4 3205 1876 +1329 0x856b0004... Ultra Sound
13643812 5 3219 1891 +1328 0x855b00e6... BloXroute Max Profit
13645762 0 3144 1817 +1327 stakingfacilities_lido 0x805e28e6... BloXroute Max Profit
13646893 3 3187 1861 +1326 0x856b0004... Ultra Sound
13646421 1 3157 1831 +1326 stakingfacilities_lido 0x8527d16c... Ultra Sound
13646399 0 3141 1817 +1324 0x850b00e0... BloXroute Regulated
13640890 0 3140 1817 +1323 abyss_finance 0xa230e2cf... BloXroute Max Profit
13644079 5 3214 1891 +1323 ether.fi Local Local
13642784 5 3214 1891 +1323 p2porg 0x8527d16c... Ultra Sound
13647330 5 3211 1891 +1320 0xb26f9666... Titan Relay
13643084 4 3195 1876 +1319 everstake 0x8527d16c... Ultra Sound
13643711 3 3180 1861 +1319 0x8db2a99d... BloXroute Max Profit
13643378 8 3254 1935 +1319 kelp 0x88a53ec4... BloXroute Regulated
13647006 6 3223 1905 +1318 p2porg 0x853b0078... Titan Relay
13642476 5 3207 1891 +1316 0x856b0004... Agnostic Gnosis
13643479 3 3177 1861 +1316 ether.fi 0x8527d16c... Ultra Sound
13646587 8 3251 1935 +1316 0x8527d16c... Ultra Sound
13645035 0 3131 1817 +1314 0x8527d16c... Ultra Sound
13644827 0 3131 1817 +1314 everstake 0xb26f9666... Titan Relay
13641963 4 3189 1876 +1313 p2porg 0x860d4173... Agnostic Gnosis
13640959 12 3307 1994 +1313 blockdaemon_lido 0x853b0078... Ultra Sound
13643688 11 3292 1979 +1313 luno 0x853b0078... Ultra Sound
13641439 3 3171 1861 +1310 0x850b00e0... BloXroute Regulated
13640560 8 3245 1935 +1310 0x88a53ec4... BloXroute Regulated
13645234 0 3126 1817 +1309 everstake 0xb67eaa5e... BloXroute Regulated
13647174 5 3199 1891 +1308 p2porg 0x853b0078... Agnostic Gnosis
13647057 0 3124 1817 +1307 everstake 0xb26f9666... Titan Relay
13645337 3 3166 1861 +1305 0x91b123d8... BloXroute Regulated
13647354 16 3358 2053 +1305 everstake 0x88a53ec4... BloXroute Max Profit
13643962 0 3118 1817 +1301 0x852b0070... Ultra Sound
13643051 5 3192 1891 +1301 0x850b00e0... BloXroute Max Profit
13644080 1 3132 1831 +1301 kelp 0xb26f9666... Titan Relay
13643754 0 3116 1817 +1299 0x850b00e0... BloXroute Regulated
13642002 8 3234 1935 +1299 everstake 0xb67eaa5e... BloXroute Max Profit
13645029 20 3411 2113 +1298 0x850b00e0... BloXroute Regulated
13645338 3 3159 1861 +1298 origin_protocol 0x850b00e0... BloXroute Max Profit
13641788 5 3188 1891 +1297 ether.fi 0xb26f9666... EthGas
13642998 9 3246 1950 +1296 ether.fi 0x88a53ec4... BloXroute Regulated
13641546 5 3186 1891 +1295 0x853b0078... BloXroute Max Profit
Total anomalies: 250

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})